import streamlit as st import os from huggingface_hub import InferenceClient # Get token from Space secrets API_TOKEN = os.getenv("HF_TOKEN") # Initialize the Inference Client client = InferenceClient(token=API_TOKEN) # Title of the app st.title("Sentence Improver App") # Text input from the user user_input = st.text_input("Enter a sentence to improve:", "I goed to the park and play.") # Button to trigger the correction if st.button("Improve Sentence"): if user_input: # Create a prompt for the LLM to improve the sentence prompt = f"Correct and improve this sentence: '{user_input}'" # Call the LLM via Hugging Face Inference API try: response = client.text_generation( prompt, model="mistralai/Mixtral-8x7B-Instruct-v0.1", # You can change this to another model #model="deepseek-ai/deepseek-coder-6.7b-instruct", max_new_tokens=100, temperature=0.7, ) # Extract the improved sentence (remove the prompt part if included) improved_sentence = response.strip() st.write("Improved Sentence:", improved_sentence) except Exception as e: st.error(f"Error calling the LLM: {str(e)}") else: st.warning("Please enter a sentence first!") else: st.write("Enter a sentence and click the button to see it improved!")