Natwar's picture
Create app.py
4275450 verified
raw
history blame contribute delete
30.5 kB
import os
import subprocess
import sys
import warnings
import logging
from typing import List, Dict, Any, Optional
import tempfile
import re
import time
import gc
import spaces
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("debug.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Suppress warnings
warnings.filterwarnings("ignore")
def install_package(package: str, version: Optional[str] = None) -> None:
"""Install a Python package if not already installed"""
package_spec = f"{package}=={version}" if version else package
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
print(f"Successfully installed {package_spec}")
except subprocess.CalledProcessError as e:
print(f"Failed to install {package_spec}: {e}")
raise
# Required packages - install these before importing
required_packages = {
"torch": None,
"gradio": "3.10.1",
"transformers": None,
"peft": None,
"bitsandbytes": None,
"PyPDF2": None,
"python-docx": None,
"accelerate": None,
"sentencepiece": None,
}
# Install required packages BEFORE importing them
for package, version in required_packages.items():
try:
__import__(package)
print(f"{package} is already installed.")
except ImportError:
print(f"Installing {package}...")
install_package(package, version)
# Now we can safely import all required modules
import torch
import transformers
import gradio as gr
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
TrainingArguments, Trainer, TrainerCallback,
BitsAndBytesConfig
)
from peft import (
LoraConfig,
prepare_model_for_kbit_training,
get_peft_model
)
import PyPDF2
import docx
import numpy as np
from tqdm import tqdm
from torch.utils.data import Dataset as TorchDataset
# Suppress transformers warnings
transformers.logging.set_verbosity_error()
# Check GPU availability
if torch.cuda.is_available():
DEVICE = "cuda"
print(f"GPU found: {torch.cuda.get_device_name(0)}")
print(f"CUDA version: {torch.version.cuda}")
else:
DEVICE = "cpu"
print("No GPU found, using CPU. Fine-tuning will be much slower.")
print("For better performance, use Google Colab with GPU runtime (Runtime > Change runtime type > GPU)")
# Constants specific to Phi-2
MODEL_KEY = "microsoft/phi-2"
MAX_SEQ_LEN = 512 # Reduced from 1024 for much lighter memory usage
# FIX: Updated target modules for Phi-2
LORA_TARGET_MODULES = ["q_proj", "k_proj", "v_proj", "dense"] # Correct modules for Phi-2
# Initialize model and tokenizer
model = None
tokenizer = None
fine_tuned_model = None
document_text = "" # Store document content for context
def load_base_model() -> str:
"""Load Phi-2 with 8-bit quantization instead of 4-bit for faster training"""
global model, tokenizer
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
try:
# Use 8-bit quantization (faster to train than 4-bit)
if DEVICE == "cuda":
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False
)
else:
bnb_config = None
# Load tokenizer with Phi-2 specific settings
print("Loading Phi-2 tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_KEY,
trust_remote_code=True,
padding_side="right"
)
# Ensure pad token is properly set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model with Phi-2 specific configuration
print("Loading Phi-2 model... (this may take a few minutes)")
if DEVICE == "cuda":
model = AutoModelForCausalLM.from_pretrained(
MODEL_KEY,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
low_cpu_mem_usage=True
)
else:
model = AutoModelForCausalLM.from_pretrained(
MODEL_KEY,
torch_dtype=torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
).to(DEVICE)
print("Phi-2 (2.7B) model loaded successfully!")
return "Phi-2 (2.7B) model loaded successfully! Ready to process documents."
except Exception as e:
error_msg = f"Error loading model: {str(e)}"
print(error_msg)
return error_msg
def phi2_prompt_template(context: str, question: str) -> str:
"""
Create a prompt optimized for Phi-2
Phi-2 responds well to clear instruction formatting
"""
return f"""Instruction: Answer the question accurately based on the context provided.
Context: {context}
Question: {question}
Answer:"""
def process_pdf(file_path: str) -> str:
"""Extract text from PDF file"""
text = ""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
total_pages = len(pdf_reader.pages)
# Process at most 30 pages to avoid memory issues
pages_to_process = min(total_pages, 30)
for i in range(pages_to_process):
page = pdf_reader.pages[i]
page_text = page.extract_text() or ""
text += page_text + "\n"
if total_pages > pages_to_process:
text += f"\n[Note: Only the first {pages_to_process} pages were processed due to size limitations.]"
except Exception as e:
print(f"Error processing PDF: {str(e)}")
return text
def process_docx(file_path: str) -> str:
"""Extract text from DOCX file"""
try:
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
return text
except Exception as e:
print(f"Error processing DOCX: {str(e)}")
return ""
def process_txt(file_path: str) -> str:
"""Extract text from TXT file"""
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as file:
text = file.read()
return text
except Exception as e:
print(f"Error processing TXT: {str(e)}")
return ""
def preprocess_text(text: str) -> str:
"""Clean and preprocess text"""
if not text:
return ""
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Remove special characters that may cause issues
text = re.sub(r'[^\w\s.,;:!?\'\"()-]', '', text)
return text.strip()
def get_semantic_chunks(text: str, chunk_size: int = 300, overlap: int = 50) -> List[str]:
"""More efficient semantic chunking"""
if not text:
return []
# Simple sentence splitting for speed
sentences = re.split(r'(?<=[.!?])\s+', text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
words = sentence.split()
if current_length + len(words) <= chunk_size:
current_chunk.append(sentence)
current_length += len(words)
else:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_length = len(words)
if current_chunk:
chunks.append(' '.join(current_chunk))
# Limit to just 5 chunks for much faster processing
if len(chunks) > 5:
indices = np.linspace(0, len(chunks)-1, 5, dtype=int)
chunks = [chunks[i] for i in indices]
return chunks
def create_qa_dataset(document_chunks: List[str]) -> List[Dict[str, str]]:
"""Create comprehensive QA pairs from document chunks for better fine-tuning"""
qa_pairs = []
# Document-level questions
full_text = " ".join(document_chunks[:5]) # Use beginning of document for overview
qa_pairs.append({
"question": "What is this document about?",
"context": full_text,
"answer": "Based on my analysis, this document discusses..." # Empty template for model to learn
})
qa_pairs.append({
"question": "Summarize the key points of this document.",
"context": full_text,
"answer": "The key points of this document are..."
})
# Process each chunk for specific QA pairs
for i, chunk in enumerate(document_chunks):
if not chunk or len(chunk) < 100: # Skip very short chunks
continue
# Context-specific questions
chunk_index = i + 1 # 1-indexed for readability
# Basic factual questions about chunk content
qa_pairs.append({
"question": f"What information is contained in section {chunk_index}?",
"context": chunk,
"answer": f"Section {chunk_index} contains information about..."
})
# Entity-based questions - find names, organizations, technical terms
entities = set(re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b', chunk))
technical_terms = set(re.findall(r'\b[A-Za-z]+-?[A-Za-z]+\b', chunk))
# Filter to meaningful entities (longer than 3 chars)
entities = [e for e in entities if len(e) > 3][:2] # Limit to 2 entity questions per chunk
for entity in entities:
qa_pairs.append({
"question": f"What does the document say about {entity}?",
"context": chunk,
"answer": f"Regarding {entity}, the document states that..."
})
# Specific content questions
sentences = re.split(r'(?<=[.!?])\s+', chunk)
key_sentences = [s for s in sentences if len(s.split()) > 8][:2] # Focus on substantive sentences
for sentence in key_sentences:
# Create question from sentence by identifying subject
subject_match = re.search(r'^(The|A|An|This|These|Those|Some|Any|Many|Few|All|Most)?\s*([A-Za-z\s]+?)\s+(is|are|was|were|has|have|had|can|could|will|would|may|might)', sentence, re.IGNORECASE)
if subject_match:
subject = subject_match.group(2).strip()
if len(subject) > 2:
qa_pairs.append({
"question": f"What information is provided about {subject}?",
"context": chunk,
"answer": sentence
})
# Add relationship questions between concepts
if i < len(document_chunks) - 1:
next_chunk = document_chunks[i+1]
qa_pairs.append({
"question": f"How does the information in section {chunk_index} relate to section {chunk_index+1}?",
"context": chunk + " " + next_chunk,
"answer": f"Section {chunk_index} discusses... while section {chunk_index+1} covers... The relationship between them is..."
})
# Limit to 5 examples max for lighter memory usage
if len(qa_pairs) > 5:
import random
random.shuffle(qa_pairs)
qa_pairs = qa_pairs[:5]
return qa_pairs
class QADataset(TorchDataset):
"""PyTorch dataset specialized for Phi-2 QA fine-tuning"""
def __init__(self, qa_pairs: List[Dict[str, str]], tokenizer, max_length: int = MAX_SEQ_LEN):
self.qa_pairs = qa_pairs
self.tokenizer = tokenizer
self.max_length = max_length
# Verify dataset structure
self.validate_dataset()
def validate_dataset(self):
"""Verify that the dataset has proper structure"""
if not self.qa_pairs:
print("Warning: Empty dataset!")
return
required_keys = ["question", "context", "answer"]
for i, item in enumerate(self.qa_pairs[:5]): # Check first 5 examples
missing = [k for k in required_keys if k not in item]
if missing:
print(f"Warning: Example {i} missing keys: {missing}")
# Check for empty values
empty = [k for k in required_keys if k in item and not item[k]]
if empty:
print(f"Warning: Example {i} has empty values for: {empty}")
def __len__(self):
return len(self.qa_pairs)
def __getitem__(self, idx):
qa_pair = self.qa_pairs[idx]
# Format prompt using Phi-2 template
context = qa_pair['context']
question = qa_pair['question']
answer = qa_pair['answer']
# Build Phi-2 specific prompt
prompt = phi2_prompt_template(context, question)
# Concatenate prompt and answer
sequence = f"{prompt} {answer}"
try:
# Tokenize with proper handling
encoded = self.tokenizer(
sequence,
truncation=True,
max_length=self.max_length,
padding="max_length",
return_tensors="pt"
)
# Extract tensors
input_ids = encoded["input_ids"].squeeze(0)
attention_mask = encoded["attention_mask"].squeeze(0)
# Create labels
labels = input_ids.clone()
# Calculate prompt length accurately
prompt_encoded = self.tokenizer(prompt, add_special_tokens=False)
prompt_length = len(prompt_encoded["input_ids"])
# Ensure prompt_length doesn't exceed labels length
prompt_length = min(prompt_length, len(labels))
# Set labels for prompt portion to -100 (ignored in loss calculation)
labels[:prompt_length] = -100
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
except Exception as e:
print(f"Error processing sample {idx}: {e}")
# Return dummy sample as fallback
return {
"input_ids": torch.zeros(self.max_length, dtype=torch.long),
"attention_mask": torch.zeros(self.max_length, dtype=torch.long),
"labels": torch.zeros(self.max_length, dtype=torch.long)
}
def clear_gpu_memory():
"""Clear GPU memory to prevent OOM errors"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
class ProgressCallback(TrainerCallback):
def __init__(self, progress, status_box=None):
self.progress = progress
self.status_box = status_box
self.current_step = 0
self.total_steps = 0
def on_train_begin(self, args, state, control, **kwargs):
self.total_steps = state.max_steps
def on_step_end(self, args, state, control, **kwargs):
self.current_step = state.global_step
progress_percent = self.current_step / self.total_steps
self.progress(0.4 + (0.5 * progress_percent),
desc=f"Epoch {state.epoch}/{args.num_train_epochs} | Step {self.current_step}/{self.total_steps}")
if self.status_box:
self.status_box.update(f"Training in progress: Epoch {state.epoch}/{args.num_train_epochs} | Step {self.current_step}/{self.total_steps}")
def create_deepspeed_config():
"""Create DeepSpeed config for faster training"""
return {
"fp16": {
"enabled": True
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"allgather_partitions": True,
"allgather_bucket_size": 5e8,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"overlap_comm": True,
"contiguous_gradients": True
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": 2e-4,
"betas": [0.9, 0.999],
"eps": 1e-8,
"weight_decay": 0.01
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": 2e-4,
"warmup_num_steps": 50
}
},
"train_batch_size": 1,
"train_micro_batch_size_per_gpu": 1,
"gradient_accumulation_steps": 1,
"gradient_clipping": 0.5,
"steps_per_print": 10
}
def finetune_model(qa_dataset, progress=gr.Progress(), status_box=None):
"""Fine-tune Phi-2 using optimized LoRA parameters"""
global model, tokenizer, fine_tuned_model
if model is None:
return "Please load the base model first."
if len(qa_dataset) == 0:
return "No training data created. Please check your document."
try:
progress(0.1, desc="Preparing model for fine-tuning...")
if status_box:
status_box.update("Preparing model for fine-tuning...")
# Clear GPU memory
clear_gpu_memory()
# Prepare model for 8-bit training if using GPU
if DEVICE == "cuda":
training_model = prepare_model_for_kbit_training(model)
else:
training_model = model
# Add this line to fix the gradient error
training_model.enable_input_require_grads()
# Configure LoRA for Phi-2
peft_config = LoraConfig(
r=2, # Reduced rank for lighter training
lora_alpha=4, # Reduced alpha
lora_dropout=0.05, # Added small dropout for regularization
bias="none",
task_type="CAUSAL_LM",
target_modules=LORA_TARGET_MODULES # Fixed Phi-2 modules
)
# Apply LoRA to model
lora_model = get_peft_model(training_model, peft_config)
# Print trainable parameters
trainable_params = sum(p.numel() for p in lora_model.parameters() if p.requires_grad)
all_params = sum(p.numel() for p in lora_model.parameters())
print(f"Trainable parameters: {trainable_params:,} ({trainable_params/all_params:.2%} of {all_params:,} total)")
# Enable gradient checkpointing for memory efficiency
if hasattr(lora_model, "gradient_checkpointing_enable"):
lora_model.gradient_checkpointing_enable()
print("Gradient checkpointing enabled")
# Create training arguments optimized for Phi-2
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=2, # Set to 2 as requested
per_device_train_batch_size=1,
gradient_accumulation_steps=1,
learning_rate=1e-4, # Reduced from 2e-4 for stability
lr_scheduler_type="constant", # Simplified scheduler
warmup_ratio=0.05, # Slight increase in warmup
weight_decay=0.01,
logging_steps=1,
max_grad_norm=0.3, # Reduced from 0.5 for better gradient stability
save_strategy="no",
report_to="none",
remove_unused_columns=False,
fp16=(DEVICE == "cuda"),
no_cuda=(DEVICE == "cpu"),
optim="adamw_torch", # Use standard optimizer instead of fused for stability
gradient_checkpointing=True
)
# Add DeepSpeed if on CUDA
if DEVICE == "cuda":
training_args.deepspeed = create_deepspeed_config()
# Create data collator that doesn't move tensors to device yet
def collate_fn(features):
batch = {}
for key in features[0].keys():
if key in ["input_ids", "attention_mask", "labels"]:
batch[key] = torch.stack([f[key] for f in features])
return batch
progress(0.3, desc="Setting up trainer...")
if status_box:
status_box.update("Setting up trainer...")
# Create trainer
trainer = Trainer(
model=lora_model,
args=training_args,
train_dataset=qa_dataset,
data_collator=collate_fn,
callbacks=[ProgressCallback(progress, status_box)] # Add both callbacks
)
# Start training
progress(0.4, desc="Initializing training...")
if status_box:
status_box.update("Initializing training...")
print("Starting training...")
trainer.train()
# Set fine-tuned model
fine_tuned_model = lora_model
# Put model in evaluation mode
fine_tuned_model.eval()
# Clear memory
clear_gpu_memory()
return "Fine-tuning completed successfully! You can now ask questions about your document."
except Exception as e:
error_msg = f"Error during fine-tuning: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
# Try to clean up memory
try:
clear_gpu_memory()
except:
pass
return error_msg
def process_document(file_obj, progress=gr.Progress(), status_box=None):
"""Process uploaded document and prepare dataset for fine-tuning"""
global model, tokenizer, document_text
progress(0, desc="Processing document...")
if status_box:
status_box.update("Processing document...")
if not file_obj:
return "Please upload a document first."
try:
# Create temp directory for file
temp_dir = tempfile.mkdtemp()
# Get file name
file_name = getattr(file_obj, 'name', 'uploaded_file')
if not isinstance(file_name, str):
file_name = "uploaded_file.txt" # Default name
# Ensure file has extension
if '.' not in file_name:
file_name = file_name + '.txt'
temp_path = os.path.join(temp_dir, file_name)
# Get file content
if hasattr(file_obj, 'read'):
file_content = file_obj.read()
else:
file_content = file_obj
with open(temp_path, 'wb') as f:
f.write(file_content)
# Extract text based on file extension
file_extension = os.path.splitext(file_name)[1].lower()
if file_extension == '.pdf':
text = process_pdf(temp_path)
elif file_extension in ['.docx', '.doc']:
text = process_docx(temp_path)
elif file_extension == '.txt' or True: # Default to txt for unknown extensions
text = process_txt(temp_path)
# Check if text was extracted
if not text or len(text) < 50:
return "Could not extract sufficient text from the document. Please check the file."
# Save document text for context window during inference
document_text = text
# Preprocess and chunk the document
progress(0.3, desc="Preprocessing document...")
if status_box:
status_box.update("Preprocessing document...")
text = preprocess_text(text)
chunks = get_semantic_chunks(text)
if not chunks:
return "Could not extract meaningful text from the document."
# Create enhanced QA pairs
progress(0.5, desc="Creating QA dataset...")
if status_box:
status_box.update("Creating QA dataset...")
qa_pairs = create_qa_dataset(chunks)
print(f"Created {len(qa_pairs)} QA pairs for training")
# Debug: Print a sample of QA pairs to verify format
if qa_pairs:
print("\nSample QA pair for validation:")
sample = qa_pairs[0]
print(f"Question: {sample['question']}")
print(f"Context length: {len(sample['context'])} chars")
print(f"Answer: {sample['answer'][:50]}...")
# Create dataset
qa_dataset = QADataset(qa_pairs, tokenizer, max_length=MAX_SEQ_LEN)
# Fine-tune model
progress(0.7, desc="Starting fine-tuning...")
if status_box:
status_box.update("Starting fine-tuning...")
result = finetune_model(qa_dataset, progress, status_box)
# Clean up
try:
os.remove(temp_path)
os.rmdir(temp_dir)
except:
pass
return result
except Exception as e:
error_msg = f"Error processing document: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
return error_msg
def generate_answer(question, status_box=None):
"""Generate answer using fine-tuned Phi-2 model with improved response quality"""
global fine_tuned_model, tokenizer, document_text
if fine_tuned_model is None:
return "Please process a document first!"
if not question.strip():
return "Please enter a question."
try:
# Clear memory before generation
if torch.cuda.is_available():
torch.cuda.empty_cache()
# For better answers, use document context to help the model
# Find relevant context from document (simple keyword matching for efficiency)
keywords = re.findall(r'\b\w{5,}\b', question.lower())
context = document_text
# If document is very long, try to find relevant section
if len(document_text) > 2000 and keywords:
chunks = get_semantic_chunks(document_text, chunk_size=500, overlap=100)
relevant_chunks = []
for chunk in chunks:
score = sum(1 for keyword in keywords if keyword.lower() in chunk.lower())
if score > 0:
relevant_chunks.append((chunk, score))
relevant_chunks.sort(key=lambda x: x[1], reverse=True)
if relevant_chunks:
# Use top 2 most relevant chunks
context = " ".join([chunk for chunk, _ in relevant_chunks[:2]])
# Limit context length to fit in model's context window
context = context[:1500] # Limit to 1500 chars for prompt space
# Create Phi-2 optimized prompt
prompt = phi2_prompt_template(context, question)
# Ensure model is in evaluation mode
fine_tuned_model.eval()
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to(fine_tuned_model.device)
# Configure generation parameters optimized for Phi-2
with torch.no_grad():
outputs = fine_tuned_model.generate(
**inputs,
max_new_tokens=75, # Reduced from 150
do_sample=True,
temperature=0.7,
top_k=40,
top_p=0.85,
repetition_penalty=1.2,
pad_token_id=tokenizer.pad_token_id
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated answer part
if "Answer:" in response:
answer = response.split("Answer:")[-1].strip()
else:
answer = response
# If answer is too short or generic, try again with more temperature
if len(answer.split()) < 10 or "I don't have enough information" in answer:
with torch.no_grad():
outputs = fine_tuned_model.generate(
**inputs,
max_new_tokens=75, # Reduced from 150
do_sample=True,
temperature=0.9, # Higher temperature
top_k=40,
top_p=0.92,
repetition_penalty=1.2,
pad_token_id=tokenizer.pad_token_id
)
# Decode second attempt
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract answer
if "Answer:" in response:
answer = response.split("Answer:")[-1].strip()
else:
answer = response
return answer
except Exception as e:
error_msg = f"Error generating answer: {str(e)}"
print(error_msg)
return error_msg
# Create Gradio interface
with gr.Blocks(title="Phi-2 Document QA", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ“š Phi-2 Document Q&A System")
gr.Markdown("Specialized system for fine-tuning Microsoft's Phi-2 model on your documents")
with gr.Tab("Document Processing"):
file_input = gr.File(
label="Upload Document (PDF, DOCX, or TXT)",
file_types=[".pdf", ".docx", ".txt"],
type="binary"
)
with gr.Row():
load_model_btn = gr.Button("1. Load Phi-2 Model", variant="secondary")
process_btn = gr.Button("2. Process & Fine-tune Document", variant="primary")
status = gr.Textbox(
label="Status",
placeholder="First load the model, then upload a document and click 'Process & Fine-tune'",
lines=3
)
gr.Markdown("""
### Tips for Best Results
- PDF, DOCX and TXT files are supported
- Keep documents under 10 pages for best results
- Processing time depends on document length and GPU availability
- For GPU usage in Colab: Runtime > Change runtime type > GPU
""")
with gr.Tab("Ask Questions"):
question_input = gr.Textbox(
label="Your Question",
placeholder="Ask about your document...",
lines=2
)
ask_btn = gr.Button("Get Answer", variant="primary")
answer_output = gr.Textbox(
label="Phi-2's Response",
placeholder="The answer will appear here after you ask a question",
lines=8
)
gr.Markdown("""
### Example Questions
- "What is this document about?"
- "Summarize the key points in this document"
- "What does the document say about [specific topic]?"
- "Explain the relationship between [concept A] and [concept B]"
""")
# Set up events
load_model_btn.click(
fn=load_base_model,
outputs=[status]
)
process_btn.click(
fn=process_document,
inputs=[file_input],
outputs=[status]
)
ask_btn.click(
fn=generate_answer,
inputs=[question_input],
outputs=[answer_output]
)
# Launch the app
if __name__ == "__main__":
demo.launch(share=True)