Spaces:
Running
Running
File size: 24,670 Bytes
41cb666 e649f1f 18b5279 e649f1f 41cb666 e78a5ff 41cb666 c2d22e5 f85a4fa 41cb666 e78a5ff 41cb666 e78a5ff 41cb666 e78a5ff 41cb666 e78a5ff 41cb666 a60d441 41cb666 a60d441 41cb666 a60d441 41cb666 a60d441 41cb666 a60d441 839bae2 e649f1f a60d441 41cb666 49e2f1f 41cb666 78d5db0 41cb666 78d5db0 41cb666 78d5db0 41cb666 78d5db0 41cb666 78d5db0 41cb666 e649f1f 41cb666 78d5db0 a60d441 78d5db0 41cb666 78d5db0 844efe0 41cb666 839bae2 41cb666 c189f8f 41cb666 49e2f1f 41cb666 14b056d 46758db 41cb666 e78a5ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
# Initalize a pipeline
from kokoro import KPipeline
# from IPython.display import display, Audio
# import soundfile as sf
import os
from huggingface_hub import list_repo_files
import uuid
import re
import gradio as gr
#translate langauge
from deep_translator import GoogleTranslator
def bulk_translate(text, target_language, chunk_size=500):
language_map_local = {
"American English": "en",
"British English": "en",
"Hindi": "hi",
"Spanish": "es",
"French": "fr",
"Italian": "it",
"Brazilian Portuguese": "pt",
"Japanese": "ja",
"Mandarin Chinese": "zh-CN"
}
# lang_code = GoogleTranslator().get_supported_languages(as_dict=True).get(target_language.lower())
lang_code=language_map_local[target_language]
sentences = re.split(r'(?<=[.!?])\s+', text) # Split text into sentences
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) <= chunk_size:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
translated_chunks = [GoogleTranslator(target=lang_code).translate(chunk) for chunk in chunks]
result=" ".join(translated_chunks)
return result.strip()
# Language mapping dictionary
language_map = {
"American English": "a",
"British English": "b",
"Hindi": "h",
"Spanish": "e",
"French": "f",
"Italian": "i",
"Brazilian Portuguese": "p",
"Japanese": "j",
"Mandarin Chinese": "z"
}
def update_pipeline(Language):
""" Updates the pipeline only if the language has changed. """
global pipeline, last_used_language
# Get language code, default to 'a' if not found
new_lang = language_map.get(Language, "a")
# Only update if the language is different
if new_lang != last_used_language:
pipeline = KPipeline(lang_code=new_lang)
last_used_language = new_lang
try:
pipeline = KPipeline(lang_code=new_lang)
last_used_language = new_lang # Update last used language
except Exception as e:
gr.Warning(f"Make sure the input text is in {Language}",duration=10)
gr.Warning(f"Fallback to English Language",duration=5)
pipeline = KPipeline(lang_code="a") # Fallback to English
last_used_language = "a"
def get_voice_names(repo_id):
"""Fetches and returns a list of voice names (without extensions) from the given Hugging Face repository."""
return [os.path.splitext(file.replace("voices/", ""))[0] for file in list_repo_files(repo_id) if file.startswith("voices/")]
def create_audio_dir():
"""Creates the 'kokoro_audio' directory in the root folder if it doesn't exist."""
root_dir = os.getcwd() # Use current working directory instead of __file__
audio_dir = os.path.join(root_dir, "kokoro_audio")
if not os.path.exists(audio_dir):
os.makedirs(audio_dir)
print(f"Created directory: {audio_dir}")
else:
print(f"Directory already exists: {audio_dir}")
return audio_dir
import re
def clean_text(text):
# Define replacement rules
replacements = {
"–": " ", # Replace en-dash with space
"-": " ", # Replace hyphen with space
"**": " ", # Replace double asterisks with space
"*": " ", # Replace single asterisk with space
"#": " ", # Replace hash with space
}
# Apply replacements
for old, new in replacements.items():
text = text.replace(old, new)
# Remove emojis using regex (covering wide range of Unicode characters)
emoji_pattern = re.compile(
r'[\U0001F600-\U0001F64F]|' # Emoticons
r'[\U0001F300-\U0001F5FF]|' # Miscellaneous symbols and pictographs
r'[\U0001F680-\U0001F6FF]|' # Transport and map symbols
r'[\U0001F700-\U0001F77F]|' # Alchemical symbols
r'[\U0001F780-\U0001F7FF]|' # Geometric shapes extended
r'[\U0001F800-\U0001F8FF]|' # Supplemental arrows-C
r'[\U0001F900-\U0001F9FF]|' # Supplemental symbols and pictographs
r'[\U0001FA00-\U0001FA6F]|' # Chess symbols
r'[\U0001FA70-\U0001FAFF]|' # Symbols and pictographs extended-A
r'[\U00002702-\U000027B0]|' # Dingbats
r'[\U0001F1E0-\U0001F1FF]' # Flags (iOS)
r'', flags=re.UNICODE)
text = emoji_pattern.sub(r'', text)
# Remove multiple spaces and extra line breaks
text = re.sub(r'\s+', ' ', text).strip()
return text
def tts_file_name(text,language):
global temp_folder
# Remove all non-alphabetic characters and convert to lowercase
text = re.sub(r'[^a-zA-Z\s]', '', text) # Retain only alphabets and spaces
text = text.lower().strip() # Convert to lowercase and strip leading/trailing spaces
text = text.replace(" ", "_") # Replace spaces with underscores
language=language.replace(" ", "_").strip()
# Truncate or handle empty text
truncated_text = text[:20] if len(text) > 20 else text if len(text) > 0 else language
# Generate a random string for uniqueness
random_string = uuid.uuid4().hex[:8].upper()
# Construct the file name
file_name = f"{temp_folder}/{truncated_text}_{random_string}.wav"
return file_name
# import soundfile as sf
import numpy as np
import wave
from pydub import AudioSegment
from pydub.silence import split_on_silence
def remove_silence_function(file_path,minimum_silence=50):
# Extract file name and format from the provided path
output_path = file_path.replace(".wav", "_no_silence.wav")
audio_format = "wav"
# Reading and splitting the audio file into chunks
sound = AudioSegment.from_file(file_path, format=audio_format)
audio_chunks = split_on_silence(sound,
min_silence_len=100,
silence_thresh=-45,
keep_silence=minimum_silence)
# Putting the file back together
combined = AudioSegment.empty()
for chunk in audio_chunks:
combined += chunk
combined.export(output_path, format=audio_format)
return output_path
def generate_and_save_audio(text, Language="American English",voice="af_bella", speed=1,remove_silence=False,keep_silence_up_to=0.05):
text=clean_text(text)
update_pipeline(Language)
generator = pipeline(text, voice=voice, speed=speed, split_pattern=r'\n+')
save_path=tts_file_name(text,Language)
# Open the WAV file for writing
timestamps={}
with wave.open(save_path, 'wb') as wav_file:
# Set the WAV file parameters
wav_file.setnchannels(1) # Mono audio
wav_file.setsampwidth(2) # 2 bytes per sample (16-bit audio)
wav_file.setframerate(24000) # Sample rate
for i, result in enumerate(generator):
gs = result.graphemes # str
# print(f"\n{i}: {gs}")
ps = result.phonemes # str
# audio = result.audio.cpu().numpy()
audio = result.audio
tokens = result.tokens # List[en.MToken]
timestamps[i]={"text":gs,"words":[]}
if Language in ["American English", "British English"]:
for t in tokens:
# print(t.text, repr(t.whitespace), t.start_ts, t.end_ts)
timestamps[i]["words"].append({"word":t.text,"start":t.start_ts,"end":t.end_ts})
audio_np = audio.numpy() # Convert Tensor to NumPy array
audio_int16 = (audio_np * 32767).astype(np.int16) # Scale to 16-bit range
audio_bytes = audio_int16.tobytes() # Convert to bytes
# Write the audio chunk to the WAV file
wav_file.writeframes(audio_bytes)
if remove_silence:
keep_silence = int(keep_silence_up_to * 1000)
new_wave_file=remove_silence_function(save_path,minimum_silence=keep_silence)
return new_wave_file,timestamps
return save_path,timestamps
def adjust_timestamps(timestamp_dict):
adjusted_timestamps = []
last_end_time = 0 # Tracks the last word's end time
for segment_id in sorted(timestamp_dict.keys()):
segment = timestamp_dict[segment_id]
words = segment["words"]
for word_entry in words:
# Skip word entries with start or end time as None or 0
if word_entry["start"] in [None, 0] and word_entry["end"] in [None, 0]:
continue
# Fill in None values with the last valid timestamp or use 0 as default
word_start = word_entry["start"] if word_entry["start"] is not None else last_end_time
word_end = word_entry["end"] if word_entry["end"] is not None else word_start # Use word_start if end is None
new_start = word_start + last_end_time
new_end = word_end + last_end_time
adjusted_timestamps.append({
"word": word_entry["word"],
"start": round(new_start, 3),
"end": round(new_end, 3)
})
# Update last_end_time to the last word's end time in this segment
if words:
last_end_time = adjusted_timestamps[-1]["end"]
return adjusted_timestamps
import string
def write_word_srt(word_level_timestamps, output_file="word.srt", skip_punctuation=True):
with open(output_file, "w", encoding="utf-8") as f:
index = 1 # Track subtitle numbering separately
for entry in word_level_timestamps:
word = entry["word"]
# Skip punctuation if enabled
if skip_punctuation and all(char in string.punctuation for char in word):
continue
start_time = entry["start"]
end_time = entry["end"]
# Convert seconds to SRT time format (HH:MM:SS,mmm)
def format_srt_time(seconds):
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
sec = int(seconds % 60)
millisec = int((seconds % 1) * 1000)
return f"{hours:02}:{minutes:02}:{sec:02},{millisec:03}"
start_srt = format_srt_time(start_time)
end_srt = format_srt_time(end_time)
# Write entry to SRT file
f.write(f"{index}\n{start_srt} --> {end_srt}\n{word}\n\n")
index += 1 # Increment subtitle number
import string
def write_sentence_srt(word_level_timestamps, output_file="subtitles.srt", max_words=8, min_pause=0.1):
subtitles = [] # Stores subtitle blocks
subtitle_words = [] # Temporary list for words in the current subtitle
start_time = None # Tracks start time of current subtitle
remove_punctuation = ['"',"—"] # Add punctuations to remove if needed
for i, entry in enumerate(word_level_timestamps):
word = entry["word"]
word_start = entry["start"]
word_end = entry["end"]
# Skip selected punctuation from remove_punctuation list
if word in remove_punctuation:
continue
# Attach punctuation to the previous word
if word in string.punctuation:
if subtitle_words:
subtitle_words[-1] = (subtitle_words[-1][0] + word, subtitle_words[-1][1])
continue
# Start a new subtitle block if needed
if start_time is None:
start_time = word_start
# Calculate pause duration if this is not the first word
if subtitle_words:
last_word_end = subtitle_words[-1][1]
pause_duration = word_start - last_word_end
else:
pause_duration = 0
# **NEW FIX:** If pause is too long, create a new subtitle but ensure continuity
if (word.endswith(('.', '!', '?')) and len(subtitle_words) >= 5) or len(subtitle_words) >= max_words or pause_duration > min_pause:
end_time = subtitle_words[-1][1] # Use last word's end time
subtitle_text = " ".join(w[0] for w in subtitle_words)
subtitles.append((start_time, end_time, subtitle_text))
# Reset for the next subtitle, but **ensure continuity**
subtitle_words = [(word, word_end)] # **Carry the current word to avoid delay**
start_time = word_start # **Start at the current word, not None**
continue # Avoid adding the word twice
# Add the current word to the subtitle
subtitle_words.append((word, word_end))
# Ensure last subtitle is added if anything remains
if subtitle_words:
end_time = subtitle_words[-1][1]
subtitle_text = " ".join(w[0] for w in subtitle_words)
subtitles.append((start_time, end_time, subtitle_text))
# Function to format SRT timestamps
def format_srt_time(seconds):
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
sec = int(seconds % 60)
millisec = int((seconds % 1) * 1000)
return f"{hours:02}:{minutes:02}:{sec:02},{millisec:03}"
# Write subtitles to SRT file
with open(output_file, "w", encoding="utf-8") as f:
for i, (start, end, text) in enumerate(subtitles, start=1):
f.write(f"{i}\n{format_srt_time(start)} --> {format_srt_time(end)}\n{text}\n\n")
# print(f"SRT file '{output_file}' created successfully!")
import json
import re
def fix_punctuation(text):
# Remove spaces before punctuation marks (., ?, !, ,)
text = re.sub(r'\s([.,?!])', r'\1', text)
# Handle quotation marks: remove spaces before and after them
text = text.replace('" ', '"')
text = text.replace(' "', '"')
text = text.replace('" ', '"')
# Track quotation marks to add space after closing quotes
track = 0
result = []
for index, char in enumerate(text):
if char == '"':
track += 1
result.append(char)
# If it's a closing quote (even number of quotes), add a space after it
if track % 2 == 0:
result.append(' ')
else:
result.append(char)
text=''.join(result)
return text.strip()
def make_json(word_timestamps, json_file_name):
data = {}
temp = []
inside_quote = False # Track if we are inside a quoted sentence
start_time = word_timestamps[0]['start'] # Initialize with the first word's start time
end_time = word_timestamps[0]['end'] # Initialize with the first word's end time
words_in_sentence = []
sentence_id = 0 # Initialize sentence ID
# Process each word in word_timestamps
for i, word_data in enumerate(word_timestamps):
word = word_data['word']
word_start = word_data['start']
word_end = word_data['end']
# Collect word info for JSON
words_in_sentence.append({'word': word, 'start': word_start, 'end': word_end})
# Update the end_time for the sentence based on the current word
end_time = word_end
# Properly handle opening and closing quotation marks
if word == '"':
if inside_quote:
temp[-1] += '"' # Attach closing quote to the last word
else:
temp.append('"') # Keep opening quote as a separate entry
inside_quote = not inside_quote # Toggle inside_quote state
else:
temp.append(word)
# Check if this is a sentence-ending punctuation
if word.endswith(('.', '?', '!')) and not inside_quote:
# Ensure the next word is NOT a dialogue tag before finalizing the sentence
if i + 1 < len(word_timestamps):
next_word = word_timestamps[i + 1]['word']
if next_word[0].islower(): # Likely a dialogue tag like "he said"
continue # Do not break the sentence yet
# Store the full sentence for JSON and reset word collection for next sentence
sentence = " ".join(temp)
sentence = fix_punctuation(sentence) # Fix punctuation in the sentence
data[sentence_id] = {
'text': sentence,
'duration': end_time - start_time,
'start': start_time,
'end': end_time,
'words': words_in_sentence
}
# Reset for the next sentence
temp = []
words_in_sentence = []
start_time = word_data['start'] # Update the start time for the next sentence
sentence_id += 1 # Increment sentence ID
# Handle any remaining words if necessary
if temp:
sentence = " ".join(temp)
sentence = fix_punctuation(sentence) # Fix punctuation in the sentence
data[sentence_id] = {
'text': sentence,
'duration': end_time - start_time,
'start': start_time,
'end': end_time,
'words': words_in_sentence
}
# Write data to JSON file
with open(json_file_name, 'w') as json_file:
json.dump(data, json_file, indent=4)
return json_file_name
import os
def modify_filename(save_path: str, prefix: str = ""):
directory, filename = os.path.split(save_path)
name, ext = os.path.splitext(filename)
new_filename = f"{prefix}{name}{ext}"
return os.path.join(directory, new_filename)
import shutil
def save_current_data():
if os.path.exists("./last"):
shutil.rmtree("./last")
os.makedirs("./last",exist_ok=True)
def KOKORO_TTS_API(text, Language="American English",voice="af_bella", speed=1,translate_text=False,remove_silence=False,keep_silence_up_to=0.05):
if translate_text:
text=bulk_translate(text, Language, chunk_size=500)
save_path,timestamps=generate_and_save_audio(text=text, Language=Language,voice=voice, speed=speed,remove_silence=remove_silence,keep_silence_up_to=keep_silence_up_to)
if remove_silence==False:
if Language in ["American English", "British English"]:
word_level_timestamps=adjust_timestamps(timestamps)
word_level_srt = modify_filename(save_path.replace(".wav", ".srt"), prefix="word_level_")
normal_srt = modify_filename(save_path.replace(".wav", ".srt"), prefix="sentence_")
json_file = modify_filename(save_path.replace(".wav", ".json"), prefix="duration_")
write_word_srt(word_level_timestamps, output_file=word_level_srt, skip_punctuation=True)
write_sentence_srt(word_level_timestamps, output_file=normal_srt, min_pause=0.01)
make_json(word_level_timestamps, json_file)
save_current_data()
shutil.copy(save_path, "./last/")
shutil.copy(word_level_srt, "./last/")
shutil.copy(normal_srt, "./last/")
shutil.copy(json_file, "./last/")
return save_path,save_path,word_level_srt,normal_srt,json_file
return save_path,save_path,None,None,None
def ui():
def toggle_autoplay(autoplay):
return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)
# Define examples in the format you mentioned
dummy_examples = [
["Hey, y'all, let’s grab some coffee and catch up!", "American English", "af_bella"],
["I'd like a large coffee, please.", "British English", "bf_isabella"],
["नमस्ते, कैसे हो?", "Hindi", "hf_alpha"],
["Hola, ¿cómo estás?", "Spanish", "ef_dora"],
["Bonjour, comment ça va?", "French", "ff_siwis"],
["Ciao, come stai?", "Italian", "if_sara"],
["Olá, como você está?", "Brazilian Portuguese", "pf_dora"],
["こんにちは、お元気ですか?", "Japanese", "jf_nezumi"],
["你好,你怎么样?", "Mandarin Chinese", "zf_xiaoni"]
]
with gr.Blocks() as demo:
# gr.Markdown("<center><h1 style='font-size: 40px;'>KOKORO TTS</h1></center>") # Larger title with CSS
gr.Markdown("[Install on Your Local System](https://github.com/NeuralFalconYT/kokoro_v1)")
lang_list = ['American English', 'British English', 'Hindi', 'Spanish', 'French', 'Italian', 'Brazilian Portuguese', 'Japanese', 'Mandarin Chinese']
voice_names = get_voice_names("hexgrad/Kokoro-82M")
with gr.Row():
with gr.Column():
text = gr.Textbox(label='📝 Enter Text', lines=3)
with gr.Row():
language_name = gr.Dropdown(lang_list, label="🌍 Select Language", value=lang_list[0])
with gr.Row():
voice_name = gr.Dropdown(voice_names, label="🎙️ Choose VoicePack", value='af_heart')#voice_names[0])
with gr.Row():
generate_btn = gr.Button('🚀 Generate', variant='primary')
with gr.Accordion('🎛️ Audio Settings', open=False):
speed = gr.Slider(minimum=0.25, maximum=2, value=1, step=0.1, label='⚡️Speed', info='Adjust the speaking speed')
translate_text = gr.Checkbox(value=False, label='🌐 Translate Text to Selected Language')
remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
with gr.Column():
audio = gr.Audio(interactive=False, label='🔊 Output Audio', autoplay=True)
audio_file = gr.File(label='📥 Download Audio')
# word_level_srt_file = gr.File(label='Download Word-Level SRT')
# srt_file = gr.File(label='Download Sentence-Level SRT')
# sentence_duration_file = gr.File(label='Download Sentence Duration JSON')
with gr.Accordion('🎬 Autoplay, Subtitle, Timestamp', open=False):
autoplay = gr.Checkbox(value=True, label='▶️ Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
word_level_srt_file = gr.File(label='📝 Download Word-Level SRT')
srt_file = gr.File(label='📜 Download Sentence-Level SRT')
sentence_duration_file = gr.File(label='⏳ Download Sentence Timestamp JSON')
text.submit(KOKORO_TTS_API, inputs=[text, language_name, voice_name, speed,translate_text, remove_silence], outputs=[audio, audio_file,word_level_srt_file,srt_file,sentence_duration_file])
generate_btn.click(KOKORO_TTS_API, inputs=[text, language_name, voice_name, speed,translate_text, remove_silence], outputs=[audio, audio_file,word_level_srt_file,srt_file,sentence_duration_file])
# Add examples to the interface
gr.Examples(examples=dummy_examples, inputs=[text, language_name, voice_name])
return demo
def tutorial():
# Markdown explanation for language code
explanation = """
## Language Code Explanation:
Example: `'af_bella'`
- **'a'** stands for **American English**.
- **'f_'** stands for **Female** (If it were 'm_', it would mean Male).
- **'bella'** refers to the specific voice.
The first character in the voice code stands for the language:
- **"a"**: American English
- **"b"**: British English
- **"h"**: Hindi
- **"e"**: Spanish
- **"f"**: French
- **"i"**: Italian
- **"p"**: Brazilian Portuguese
- **"j"**: Japanese
- **"z"**: Mandarin Chinese
The second character stands for gender:
- **"f_"**: Female
- **"m_"**: Male
"""
with gr.Blocks() as demo2:
gr.Markdown("[Install on Your Local System](https://github.com/NeuralFalconYT/kokoro_v1)")
gr.Markdown(explanation) # Display the explanation
return demo2
import click
@click.command()
@click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
@click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
def main(debug, share):
demo1 = ui()
demo2 = tutorial()
demo = gr.TabbedInterface([demo1, demo2],["Multilingual TTS","VoicePack Explanation"],title="Kokoro TTS")#,theme='JohnSmith9982/small_and_pretty')
demo.queue().launch(debug=debug, share=share)
# demo.queue().launch(debug=debug, share=share,server_port=9000)
#Run on local network
# laptop_ip="192.168.0.30"
# port=8080
# demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port)
# Initialize default pipeline
last_used_language = "a"
pipeline = KPipeline(lang_code=last_used_language)
temp_folder = create_audio_dir()
if __name__ == "__main__":
main()
|