Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, AutoModel | |
from sklearn.metrics.pairwise import pairwise_distances, cosine_similarity | |
import faiss | |
tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2") | |
model = AutoModel.from_pretrained("cointegrated/rubert-tiny2") | |
df = pd.read_csv('data_final.csv') | |
MAX_LEN = 300 | |
def embed_bert_cls(text, model, tokenizer): | |
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt', max_length=MAX_LEN) | |
with torch.no_grad(): | |
model_output = model(**{k: v.to(model.device) for k, v in t.items()}) | |
embeddings = model_output.last_hidden_state[:, 0, :] | |
embeddings = torch.nn.functional.normalize(embeddings) | |
return embeddings[0].cpu().numpy() | |
books_vector = np.loadtxt('vectors.txt') | |
index = faiss.IndexFlatIP(books_vector.shape[1]) | |
index.add(books_vector) | |
st.title('Приложение для рекомендации книг') | |
text = st.text_input('Введите запрос:') | |
num_results = st.number_input('Введите количество рекомендаций:', min_value=1, max_value=50, value=5) | |
recommend_button = st.button('Найти') | |
if text and recommend_button: | |
user_text_pred = embed_bert_cls(text, model, tokenizer) | |
D, I = index.search(user_text_pred.reshape(1, -1), num_results) | |
st.subheader('Топ рекомендуемых книг:') | |
st.write(f'Всего книг, используемых в поиске: {df.shape[0]}') | |
for i, j in zip(I[0], D[0]): | |
col_1, col_2 = st.columns([1, 3]) | |
with col_1: | |
st.image(df['image_url'][i], use_column_width=True) | |
st.write(round(j* 100, 2)) | |
with col_2: | |
st.write(f'Название книги: {df["title"][i]}') | |
st.write(f'Название книги: {df["author"][i]}') | |
st.write(f'Ссылка: {df["page_url"][i]}') | |
st.write(f'Название книги: {df["annotation"][i]}') |