Spaces:
Running
on
Zero
Running
on
Zero
some vertical video here
Browse files
app.py
CHANGED
@@ -18,6 +18,10 @@ MODEL_REPO = "rain1011/pyramid-flow-sd3"
|
|
18 |
MODEL_VARIANT = "diffusion_transformer_768p"
|
19 |
MODEL_DTYPE = "bf16"
|
20 |
|
|
|
|
|
|
|
|
|
21 |
def center_crop(image, target_width, target_height):
|
22 |
width, height = image.size
|
23 |
aspect_ratio_target = target_width / target_height
|
@@ -62,13 +66,24 @@ model = load_model()
|
|
62 |
|
63 |
# Text-to-video generation function
|
64 |
@spaces.GPU(duration=140)
|
65 |
-
def generate_video(prompt, image=None, duration=3, guidance_scale=9, video_guidance_scale=5, frames_per_second=8, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
multiplier = 1.2 if is_canonical else 3.0
|
67 |
temp = int(duration * multiplier) + 1
|
68 |
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
|
73 |
frames = model.generate_i2v(
|
74 |
prompt=prompt,
|
@@ -86,14 +101,15 @@ def generate_video(prompt, image=None, duration=3, guidance_scale=9, video_guida
|
|
86 |
prompt=prompt,
|
87 |
num_inference_steps=[20, 20, 20],
|
88 |
video_num_inference_steps=[10, 10, 10],
|
89 |
-
height=
|
90 |
-
width=
|
91 |
temp=temp,
|
92 |
guidance_scale=guidance_scale,
|
93 |
video_guidance_scale=video_guidance_scale,
|
94 |
output_type="pil",
|
95 |
save_memory=True,
|
96 |
)
|
|
|
97 |
output_path = f"{str(uuid.uuid4())}_output_video.mp4"
|
98 |
export_to_video(frames, output_path, fps=frames_per_second)
|
99 |
return output_path
|
@@ -110,6 +126,11 @@ with gr.Blocks() as demo:
|
|
110 |
i2v_image = gr.Image(type="pil", label="Input Image")
|
111 |
t2v_prompt = gr.Textbox(label="Prompt")
|
112 |
with gr.Accordion("Advanced settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
113 |
t2v_duration = gr.Slider(minimum=1, maximum=3 if is_canonical else 10, value=3 if is_canonical else 5, step=1, label="Duration (seconds)", visible=not is_canonical)
|
114 |
t2v_fps = gr.Slider(minimum=8, maximum=24, step=16, value=8 if is_canonical else 24, label="Frames per second", visible=is_canonical)
|
115 |
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale")
|
@@ -140,7 +161,7 @@ with gr.Blocks() as demo:
|
|
140 |
)
|
141 |
t2v_generate_btn.click(
|
142 |
generate_video,
|
143 |
-
inputs=[t2v_prompt, i2v_image, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale, t2v_fps],
|
144 |
outputs=t2v_output
|
145 |
)
|
146 |
|
|
|
18 |
MODEL_VARIANT = "diffusion_transformer_768p"
|
19 |
MODEL_DTYPE = "bf16"
|
20 |
|
21 |
+
# Define resolution presets
|
22 |
+
LANDSCAPE_RESOLUTION = {"width": 1280, "height": 768}
|
23 |
+
PORTRAIT_RESOLUTION = {"width": 768, "height": 1280}
|
24 |
+
|
25 |
def center_crop(image, target_width, target_height):
|
26 |
width, height = image.size
|
27 |
aspect_ratio_target = target_width / target_height
|
|
|
66 |
|
67 |
# Text-to-video generation function
|
68 |
@spaces.GPU(duration=140)
|
69 |
+
def generate_video(prompt, image=None, orientation="landscape", duration=3, guidance_scale=9, video_guidance_scale=5, frames_per_second=8, progress=gr.Progress(track_tqdm=True)):
|
70 |
+
# Set width and height based on orientation
|
71 |
+
if orientation == "landscape":
|
72 |
+
width = LANDSCAPE_RESOLUTION["width"]
|
73 |
+
height = LANDSCAPE_RESOLUTION["height"]
|
74 |
+
else: # portrait
|
75 |
+
width = PORTRAIT_RESOLUTION["width"]
|
76 |
+
height = PORTRAIT_RESOLUTION["height"]
|
77 |
+
|
78 |
multiplier = 1.2 if is_canonical else 3.0
|
79 |
temp = int(duration * multiplier) + 1
|
80 |
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
|
81 |
+
|
82 |
+
if image:
|
83 |
+
# Process the input image according to the selected orientation
|
84 |
+
cropped_image = center_crop(image, width, height)
|
85 |
+
resized_image = cropped_image.resize((width, height))
|
86 |
+
|
87 |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
|
88 |
frames = model.generate_i2v(
|
89 |
prompt=prompt,
|
|
|
101 |
prompt=prompt,
|
102 |
num_inference_steps=[20, 20, 20],
|
103 |
video_num_inference_steps=[10, 10, 10],
|
104 |
+
height=height,
|
105 |
+
width=width,
|
106 |
temp=temp,
|
107 |
guidance_scale=guidance_scale,
|
108 |
video_guidance_scale=video_guidance_scale,
|
109 |
output_type="pil",
|
110 |
save_memory=True,
|
111 |
)
|
112 |
+
|
113 |
output_path = f"{str(uuid.uuid4())}_output_video.mp4"
|
114 |
export_to_video(frames, output_path, fps=frames_per_second)
|
115 |
return output_path
|
|
|
126 |
i2v_image = gr.Image(type="pil", label="Input Image")
|
127 |
t2v_prompt = gr.Textbox(label="Prompt")
|
128 |
with gr.Accordion("Advanced settings", open=False):
|
129 |
+
t2v_orientation = gr.Radio(
|
130 |
+
choices=["landscape", "portrait"],
|
131 |
+
value="landscape",
|
132 |
+
label="Video Orientation"
|
133 |
+
)
|
134 |
t2v_duration = gr.Slider(minimum=1, maximum=3 if is_canonical else 10, value=3 if is_canonical else 5, step=1, label="Duration (seconds)", visible=not is_canonical)
|
135 |
t2v_fps = gr.Slider(minimum=8, maximum=24, step=16, value=8 if is_canonical else 24, label="Frames per second", visible=is_canonical)
|
136 |
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale")
|
|
|
161 |
)
|
162 |
t2v_generate_btn.click(
|
163 |
generate_video,
|
164 |
+
inputs=[t2v_prompt, i2v_image, t2v_orientation, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale, t2v_fps],
|
165 |
outputs=t2v_output
|
166 |
)
|
167 |
|