MarineLitter / app.py
Roopalav's picture
Update app.py
aa9f958 verified
raw
history blame
12.2 kB
import os, sys
import random
import warnings
os.system("python -m pip install -e segment_anything")
os.system("python -m pip install -e GroundingDINO")
os.system("pip install --upgrade diffusers[torch]")
os.system("pip install opencv-python pycocotools matplotlib onnxruntime onnx ipykernel")
os.system("wget http://cleancoastindia.com//SsagarSvc/Uploads/sample1.jpg")
os.system("wget http://cleancoastindia.com/SsagarSvc/Uploads/sample2.jpg")
os.system("wget http://cleancoastindia.com/SsagarSvc/Uploads/sample3.jpg")
os.system("wget http://cleancoastindia.com/SsagarSvc/Uploads/sample4.jpg")
os.system("wget http://cleancoastindia.com/SsagarSvc/Uploads/sample5.jpg")
os.system("wget http://cleancoastindia.com/SsagarSvc/Uploads/sample6.jpg")
os.system("wget http://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth")
os.system("wget http://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth")
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "segment_anything"))
sys.path.append(os.path.join(os.getcwd(), "Roboto-Regular"))
warnings.filterwarnings("ignore")
import gradio as gr
import argparse
import numpy as np
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam, SamPredictor
import numpy as np
# diffusers
import torch
from diffusers import StableDiffusionInpaintPipeline
# BLIP
from transformers import BlipProcessor, BlipForConditionalGeneration
def generate_caption(processor, blip_model, raw_image):
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to(
"cuda", torch.float16)
out = blip_model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
def transform_image(image_pil):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(
clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True):
# caption="all plastic.all metal.all paper.all glass.all cardboard.all wood.all rubber"
# caption="plastic.metal.paper.glass.cardboard.wood.rubber"
print(caption)
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(
pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def draw_mask(mask, draw, random_color=False):
if random_color:
color = (random.randint(0, 255), random.randint(
0, 255), random.randint(0, 255), 153)
else:
color = (30, 144, 255, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def draw_box(box, draw, label):
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
draw.rectangle(((box[0], box[1]), (box[2], box[3])),
outline=color, width=2)
if label:
# font = ImageFont.load_default()
font = ImageFont.truetype("Roboto-Regular.ttf", 20)
if hasattr(font, "getbbox"):
bbox = draw.textbbox((box[0], box[1]), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (box[0], box[1], w + box[0], box[1] + h)
draw.rectangle(bbox, fill=color)
# draw.text((box[0], box[1]), str(label), fill="white")
draw.text((box[0], box[1]), label)
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint = 'sam_vit_h_4b8939.pth'
output_dir = "outputs"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
blip_processor = None
blip_model = None
groundingdino_model = None
sam_predictor = None
inpaint_pipeline = None
def run_grounded_sam(input_image, text_prompt, box_threshold, text_threshold, iou_threshold):
global blip_processor, blip_model, groundingdino_model, sam_predictor, inpaint_pipeline
task_type = "seg"
box_threshold = 0.3
text_threshold = 0.3
iou_threshold = 0.75
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image_pil = input_image.convert("RGB")
transformed_image = transform_image(image_pil)
if groundingdino_model is None:
groundingdino_model = load_model(
config_file, ckpt_filenmae, device=device)
# run grounding dino model
boxes_filt, scores, pred_phrases = get_grounding_output(
groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold
)
size = image_pil.size
# process boxes
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
# nms
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = torchvision.ops.nms(
boxes_filt, scores, iou_threshold).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
print(f"After NMS: {boxes_filt.shape[0]} boxes")
if task_type == 'seg' and boxes_filt.shape[0] > 0:
if sam_predictor is None:
# initialize SAM
assert sam_checkpoint, 'sam_checkpoint is not found!'
sam = build_sam(checkpoint=sam_checkpoint)
sam.to(device=device)
sam_predictor = SamPredictor(sam)
image = np.array(image_pil)
sam_predictor.set_image(image)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(
boxes_filt, image.shape[:2]).to(device)
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
# masks: [1, 1, 512, 512]
if task_type == 'seg' and len(masks) > 0:
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
for mask in masks:
draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True)
image_draw = ImageDraw.Draw(image_pil)
label_string = ""
label_stringarr = []
for box, label in zip(boxes_filt, pred_phrases):
# draw_box(box, image_draw, label)
index = label.find("(")
if index != -1:
new_label = label[:index].strip()
label_stringarr.append(new_label)
draw_box(box, image_draw, new_label)
else:
new_label = label
label_stringarr.append(new_label)
draw_box(box, image_draw, new_label)
# print(label_stringarr)
label_counts = []
counts = {}
for label in label_stringarr:
if label in counts:
counts[label] += 1
else:
counts[label] = 1
for label, count in counts.items():
label_counts.append(f"{label}: {count}")
label_counts_string = "\n".join(label_counts)
print(label_counts_string)
image_pil = image_pil.convert('RGBA')
image_pil.alpha_composite(mask_image)
return image_pil, label_counts_string
# return [image_pil, mask_image]
else:
raise gr.InvalidOutputException("Model output is empty")
print("number of masks".format(len(masks)))
if __name__ == "__main__":
parser = argparse.ArgumentParser("Marine Litter", add_help=True)
parser.add_argument("--debug", action="store_true",
help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
parser.add_argument('--no-gradio-queue', action="store_true",
help='path to the SAM checkpoint')
args = parser.parse_args()
print(args)
block = gr.Blocks()
if not args.no_gradio_queue:
block = block.queue()
with block:
with gr.Row():
with gr.Column():
gr.Markdown("# Litter Segmentation and Detection")
input_image = gr.Image(type="pil", label="Upload Image", interactive=True)
# , value="demo1.jpg"
# task_type = gr.Dropdown(
text_prompt = gr.Dropdown(["plastic.metal.paper.glass.rubber.wood",
"bottle.cap.cup.rope.tire.cigarette.bag.slippers.can.card board box.paper.wrapper.food.coconut.dustbin.cover"],
value="plastic.metal.paper.glass.rubber.wood", label="select or enter prompt separate with dot . ",allow_custom_value=True)
# text_prompt = gr.Textbox(label="Text Prompt",
# value="plastic.metal.paper.glass.cardboard.wood.rubber")
run_button = gr.Button("Run")
gr.Markdown("# Image Examples")
#gr.Examples(["sample1.jpg", "sample2.jpg","sample3.jpg","sample4.jpg","sample5.jpg","sample6.jpg"], input_image,cache_examples=False)
gr.Examples(examples=["sample1.jpg", "sample2.jpg", "sample3.jpg", "sample4.jpg", "sample5.jpg", "sample6.jpg"],inputs=[input_image],cache_examples=False)
# with gr.Accordion("Advanced options", open=False):
with gr.Column():
gr.Markdown("# Model Output")
gallery = gr.Image("Segmented Output")
gr.Markdown("# No of classes and count")
lbl = gr.Label("Classes Detected")
# gallery = gr.Gallery(
# label="Generated images", show_label=True, elem_id="gallery"
# ).style(preview=True, grid=2, object_fit="scale-down")
run_button.click(fn=run_grounded_sam, inputs=[input_image, text_prompt],
outputs=[gallery, lbl])
block.launch(debug=args.debug, share=args.share, show_error=True)
#block.launch(debug=True, show_error=True)