Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load your model and tokenizer | |
model_name = "Sakshi1307/SakshiAI" | |
tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
def generate_answer(question): | |
inputs = tokenizer.encode(question, return_tensors='pt') | |
outputs = model.generate(inputs, max_length=500, num_return_sequences=1) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return answer | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=generate_answer, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your interview question here..."), | |
outputs="text", | |
title="Interview Simulation AI", | |
description="This AI model simulates me in an interview questions. Type in a question and see how it responds!" | |
) | |
# Launch the application | |
if __name__ == "__main__": | |
iface.launch() | |