Shilpaj commited on
Commit
0238edd
·
verified ·
1 Parent(s): 0f9456b

Feat: Project files

Browse files
adapters/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/phi-2
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
adapters/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/phi-2",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "dense",
28
+ "v_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapters/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8a057de8de7bf5b6239e976ad62100052736939a014dd69d06e3d67ee97743f
3
+ size 41977360
adapters/added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
adapters/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
adapters/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
adapters/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
adapters/tokenizer_config.json ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": " ",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": false
19
+ },
20
+ "50258": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50259": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50260": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50261": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50262": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50263": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50264": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50265": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50266": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50267": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50268": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50269": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50270": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50271": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50272": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50273": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50274": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50275": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50276": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50277": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50278": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50279": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50280": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "50281": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": true,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "50282": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": true,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "50283": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": true,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "50284": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": true,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "50285": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": true,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "50286": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": true,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "50287": {
253
+ "content": "\t\t\t\t\t\t\t\t\t",
254
+ "lstrip": false,
255
+ "normalized": true,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "50288": {
261
+ "content": "\t\t\t\t\t\t\t\t",
262
+ "lstrip": false,
263
+ "normalized": true,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "50289": {
269
+ "content": "\t\t\t\t\t\t\t",
270
+ "lstrip": false,
271
+ "normalized": true,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "50290": {
277
+ "content": "\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": true,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "50291": {
285
+ "content": "\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": true,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "50292": {
293
+ "content": "\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": true,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "50293": {
301
+ "content": "\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": true,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "50294": {
309
+ "content": "\t\t",
310
+ "lstrip": false,
311
+ "normalized": true,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ }
316
+ },
317
+ "bos_token": "<|endoftext|>",
318
+ "clean_up_tokenization_spaces": true,
319
+ "eos_token": "<|endoftext|>",
320
+ "extra_special_tokens": {},
321
+ "model_max_length": 2048,
322
+ "pad_token": "<|endoftext|>",
323
+ "return_token_type_ids": false,
324
+ "tokenizer_class": "CodeGenTokenizer",
325
+ "unk_token": "<|endoftext|>"
326
+ }
adapters/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
app.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Gradio application for inference with Phi-2 model using LoRA/QLoRA adapters.
4
+ Pre-loads the model and provides a simple chat interface.
5
+ """
6
+
7
+ import os
8
+ import time
9
+ import torch
10
+ import gradio as gr
11
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
12
+ from peft import PeftModel
13
+
14
+ # Define constants
15
+ DEFAULT_MODEL_PATH = "./adapters" # Path to the trained adapters
16
+ DEFAULT_BASE_MODEL = "microsoft/phi-2" # Base model name
17
+ DEFAULT_MAX_NEW_TOKENS = 512
18
+ DEFAULT_TEMPERATURE = 0.7
19
+ DEFAULT_TOP_P = 0.9
20
+ DEFAULT_TOP_K = 50
21
+
22
+ # Global variables to store the model and tokenizer
23
+ model = None
24
+ tokenizer = None
25
+
26
+ def load_model(
27
+ model_path=DEFAULT_MODEL_PATH,
28
+ base_model=DEFAULT_BASE_MODEL,
29
+ use_qlora=True,
30
+ device="cuda"
31
+ ):
32
+ """
33
+ Load the base model and adapter weights.
34
+ """
35
+ global model, tokenizer
36
+
37
+ print(f"Loading tokenizer from {base_model}...")
38
+ tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
39
+ if tokenizer.pad_token is None:
40
+ tokenizer.pad_token = tokenizer.eos_token
41
+
42
+ # Configure model loading parameters
43
+ model_kwargs = {"trust_remote_code": True}
44
+
45
+ # Set up quantization for QLoRA if enabled
46
+ if use_qlora:
47
+ print("Using 4-bit quantization (QLoRA)")
48
+ compute_dtype = torch.float16
49
+ if torch.cuda.is_bf16_supported():
50
+ compute_dtype = torch.bfloat16
51
+
52
+ quantization_config = BitsAndBytesConfig(
53
+ load_in_4bit=True,
54
+ bnb_4bit_quant_type="nf4",
55
+ bnb_4bit_compute_dtype=compute_dtype,
56
+ bnb_4bit_use_double_quant=True
57
+ )
58
+ model_kwargs["quantization_config"] = quantization_config
59
+ else:
60
+ model_kwargs["torch_dtype"] = torch.float16 if torch.cuda.is_available() else torch.float32
61
+
62
+ # Check if adapter path exists
63
+ if not os.path.exists(model_path):
64
+ print(f"Warning: Model path '{model_path}' does not exist. Using base model only.")
65
+
66
+ # Load base model
67
+ print(f"Loading base model {base_model}...")
68
+ base_model = AutoModelForCausalLM.from_pretrained(
69
+ base_model,
70
+ **model_kwargs
71
+ )
72
+
73
+ # Load adapter weights if available
74
+ if os.path.exists(model_path) and os.path.exists(os.path.join(model_path, "adapter_config.json")):
75
+ print(f"Loading {'QLoRA' if use_qlora else 'LoRA'} adapters from {model_path}...")
76
+ model = PeftModel.from_pretrained(base_model, model_path)
77
+
78
+ # Special handling for QLoRA - move norm layers to float32 for stability
79
+ # and ensure model and adapter layers have consistent dtypes
80
+ if use_qlora:
81
+ print("Harmonizing model layer dtypes...")
82
+ working_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
83
+
84
+ # First make sure important parts are in float16/32
85
+ for name, module in model.named_modules():
86
+ if any(x in name for x in ["lm_head", "embed_tokens"]):
87
+ module.to(working_dtype)
88
+ elif "norm" in name:
89
+ module.to(torch.float32) # Norms should be in fp32 for stability
90
+ else:
91
+ model = base_model
92
+ print("Using base model without adapters")
93
+
94
+ # Move model to device
95
+ device = torch.device(device if torch.cuda.is_available() else "cpu")
96
+ model = model.to(device)
97
+ model.eval()
98
+
99
+ print(f"Model loaded successfully and moved to {device}!")
100
+ return model, tokenizer
101
+
102
+
103
+ def generate_response(prompt, chat_history):
104
+ """
105
+ Generate text response from the model.
106
+ """
107
+ global model, tokenizer
108
+
109
+ if model is None or tokenizer is None:
110
+ return chat_history + [(prompt, "Model not loaded yet. Please wait a moment.")]
111
+
112
+ # Format prompt for Phi-2
113
+ formatted_prompt = f"Instruct: {prompt}\nOutput:"
114
+
115
+ # Tokenize input prompt
116
+ device = next(model.parameters()).device
117
+ input_ids = tokenizer.encode(formatted_prompt, return_tensors="pt").to(device)
118
+ attention_mask = torch.ones_like(input_ids).to(device)
119
+
120
+ # Generate text with robust error handling
121
+ try:
122
+ with torch.no_grad():
123
+ # Explicit type casting
124
+ input_ids = input_ids.to(torch.long) # IDs should always be long
125
+ attention_mask = attention_mask.to(torch.float16 if torch.cuda.is_available() else torch.float32)
126
+
127
+ # First attempt with simple parameters
128
+ generated_ids = model.generate(
129
+ input_ids=input_ids,
130
+ max_new_tokens=DEFAULT_MAX_NEW_TOKENS,
131
+ do_sample=True,
132
+ temperature=DEFAULT_TEMPERATURE,
133
+ top_p=DEFAULT_TOP_P,
134
+ top_k=DEFAULT_TOP_K,
135
+ )
136
+ except Exception as e:
137
+ print(f"Generation error: {str(e)}")
138
+ try:
139
+ # Fallback: Try with model in eval with forced dtype
140
+ print("Attempting fallback generation...")
141
+ with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu',
142
+ dtype=torch.float16 if torch.cuda.is_available() else torch.float32):
143
+ generated_ids = model.generate(
144
+ input_ids=input_ids,
145
+ max_new_tokens=DEFAULT_MAX_NEW_TOKENS,
146
+ do_sample=False, # Use greedy decoding for more stability
147
+ )
148
+ except Exception as e2:
149
+ return chat_history + [(prompt, f"Error generating response: {str(e2)}")]
150
+
151
+ # Decode the generated text
152
+ generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
153
+
154
+ # Extract just the output part
155
+ output = generated_text.split("Output:")[1].strip() if "Output:" in generated_text else generated_text
156
+
157
+ # Update chat history
158
+ return chat_history + [(prompt, output)]
159
+
160
+
161
+ # Example prompts to demonstrate model capabilities
162
+ examples = [
163
+ ["Explain the concept of quantum computing in simple terms."],
164
+ ["Write a short story about a robot that learns to paint."],
165
+ ["What are some ethical considerations when developing AI systems?"],
166
+ ["How can I improve my productivity while working from home?"],
167
+ ["Create a meal plan for a vegetarian diet that provides sufficient protein."]
168
+ ]
169
+
170
+
171
+ # Initialize the model at startup
172
+ print("Pre-loading the model...")
173
+ try:
174
+ model, tokenizer = load_model()
175
+ except Exception as e:
176
+ print(f"Error loading model: {str(e)}")
177
+ print("The app will still start, but you may need to check your model path.")
178
+
179
+ # Create the Gradio interface
180
+ with gr.Blocks(title="Supervised Fine Tuned (SFT) Phi-2 with QLoRA Adapters") as demo:
181
+ gr.Markdown("# Supervised Fine Tuned (SFT) Phi-2 with QLoRA Adapters")
182
+ gr.Markdown("- Base model (foundation model) Phi-2\n"
183
+ "- Supervised Fine Tuned (SFT) method is used to fine-tune the model on [OpenAssistant dataset](https://huggingface.co/datasets/OpenAssistant/oasst1?row=0)\n"
184
+ "- QLoRA Adapters are used to reduce the number of parameters in the model\n"
185
+ "- This gives the model an ability to answer questions rather than just generating text\n"
186
+ "- Chat with SFT Phi-2 model with QLoRA Adapters")
187
+
188
+ chatbot = gr.Chatbot(height=500)
189
+
190
+ with gr.Row():
191
+ msg = gr.Textbox(
192
+ label="Type your message here",
193
+ placeholder="Ask me anything...",
194
+ show_label=False,
195
+ scale=9
196
+ )
197
+ send_btn = gr.Button("Send", scale=1)
198
+
199
+ clear = gr.Button("Clear Chat")
200
+
201
+ # Add examples section
202
+ gr.Markdown("### Example Capabilities")
203
+ gr.Examples(
204
+ examples=examples,
205
+ inputs=msg,
206
+ outputs=chatbot,
207
+ fn=generate_response,
208
+ cache_examples=False,
209
+ examples_per_page=5
210
+ )
211
+
212
+ # Set up event handlers
213
+ send_btn.click(generate_response, [msg, chatbot], [chatbot]).then(
214
+ lambda: "", None, msg # Clear the input box after sending
215
+ )
216
+
217
+ msg.submit(generate_response, [msg, chatbot], [chatbot]).then(
218
+ lambda: "", None, msg # Clear the input box after sending
219
+ )
220
+
221
+ clear.click(lambda: [], None, chatbot)
222
+
223
+ # Launch the app
224
+ if __name__ == "__main__":
225
+ # Check GPU status
226
+ if torch.cuda.is_available():
227
+ print(f"CUDA available: {torch.cuda.get_device_name(0)}")
228
+ print(f"Memory allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
229
+ print(f"Memory reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
230
+ else:
231
+ print("CUDA not available, using CPU. This will be very slow for inference.")
232
+
233
+ # Launch the Gradio app
234
+ demo.launch(share=True)
requirements.txt ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Core dependencies
2
+ torch>=2.0.0
3
+ transformers>=4.37.0
4
+ datasets>=2.12.0
5
+ accelerate>=0.20.0
6
+ peft>=0.5.0
7
+
8
+ # Quantization and optimization
9
+ bitsandbytes>=0.40.0
10
+ optimum>=1.12.0
11
+ safetensors>=0.3.1
12
+
13
+ # Training frameworks
14
+ pytorch-lightning>=2.0.0
15
+ deepspeed>=0.10.0
16
+
17
+ # Monitoring and logging
18
+ tensorboard>=2.12.0
19
+ wandb>=0.15.0
20
+ matplotlib>=3.7.0
21
+ evaluate>=0.4.0
22
+
23
+ # Data processing
24
+ nltk>=3.8.0
25
+ pandas>=2.0.0
26
+ scipy>=1.10.0
27
+ tqdm>=4.65.0
28
+
29
+ # Optional: For better text processing
30
+ sentencepiece>=0.1.99
31
+ tokenizers>=0.13.3