Update openvoice/se_extractor.py
Browse files- openvoice/se_extractor.py +153 -153
openvoice/se_extractor.py
CHANGED
@@ -1,153 +1,153 @@
|
|
1 |
-
import os
|
2 |
-
import glob
|
3 |
-
import torch
|
4 |
-
import hashlib
|
5 |
-
import librosa
|
6 |
-
import base64
|
7 |
-
from glob import glob
|
8 |
-
import numpy as np
|
9 |
-
from pydub import AudioSegment
|
10 |
-
from faster_whisper import WhisperModel
|
11 |
-
import hashlib
|
12 |
-
import base64
|
13 |
-
import librosa
|
14 |
-
from whisper_timestamped.transcribe import get_audio_tensor, get_vad_segments
|
15 |
-
|
16 |
-
model_size = "medium"
|
17 |
-
# Run on GPU with FP16
|
18 |
-
model = None
|
19 |
-
def split_audio_whisper(audio_path, audio_name, target_dir='processed'):
|
20 |
-
global model
|
21 |
-
if model is None:
|
22 |
-
model = WhisperModel(model_size, device="
|
23 |
-
audio = AudioSegment.from_file(audio_path)
|
24 |
-
max_len = len(audio)
|
25 |
-
|
26 |
-
target_folder = os.path.join(target_dir, audio_name)
|
27 |
-
|
28 |
-
segments, info = model.transcribe(audio_path, beam_size=5, word_timestamps=True)
|
29 |
-
segments = list(segments)
|
30 |
-
|
31 |
-
# create directory
|
32 |
-
os.makedirs(target_folder, exist_ok=True)
|
33 |
-
wavs_folder = os.path.join(target_folder, 'wavs')
|
34 |
-
os.makedirs(wavs_folder, exist_ok=True)
|
35 |
-
|
36 |
-
# segments
|
37 |
-
s_ind = 0
|
38 |
-
start_time = None
|
39 |
-
|
40 |
-
for k, w in enumerate(segments):
|
41 |
-
# process with the time
|
42 |
-
if k == 0:
|
43 |
-
start_time = max(0, w.start)
|
44 |
-
|
45 |
-
end_time = w.end
|
46 |
-
|
47 |
-
# calculate confidence
|
48 |
-
if len(w.words) > 0:
|
49 |
-
confidence = sum([s.probability for s in w.words]) / len(w.words)
|
50 |
-
else:
|
51 |
-
confidence = 0.
|
52 |
-
# clean text
|
53 |
-
text = w.text.replace('...', '')
|
54 |
-
|
55 |
-
# left 0.08s for each audios
|
56 |
-
audio_seg = audio[int( start_time * 1000) : min(max_len, int(end_time * 1000) + 80)]
|
57 |
-
|
58 |
-
# segment file name
|
59 |
-
fname = f"{audio_name}_seg{s_ind}.wav"
|
60 |
-
|
61 |
-
# filter out the segment shorter than 1.5s and longer than 20s
|
62 |
-
save = audio_seg.duration_seconds > 1.5 and \
|
63 |
-
audio_seg.duration_seconds < 20. and \
|
64 |
-
len(text) >= 2 and len(text) < 200
|
65 |
-
|
66 |
-
if save:
|
67 |
-
output_file = os.path.join(wavs_folder, fname)
|
68 |
-
audio_seg.export(output_file, format='wav')
|
69 |
-
|
70 |
-
if k < len(segments) - 1:
|
71 |
-
start_time = max(0, segments[k+1].start - 0.08)
|
72 |
-
|
73 |
-
s_ind = s_ind + 1
|
74 |
-
return wavs_folder
|
75 |
-
|
76 |
-
|
77 |
-
def split_audio_vad(audio_path, audio_name, target_dir, split_seconds=10.0):
|
78 |
-
SAMPLE_RATE = 16000
|
79 |
-
audio_vad = get_audio_tensor(audio_path)
|
80 |
-
segments = get_vad_segments(
|
81 |
-
audio_vad,
|
82 |
-
output_sample=True,
|
83 |
-
min_speech_duration=0.1,
|
84 |
-
min_silence_duration=1,
|
85 |
-
method="silero",
|
86 |
-
)
|
87 |
-
segments = [(seg["start"], seg["end"]) for seg in segments]
|
88 |
-
segments = [(float(s) / SAMPLE_RATE, float(e) / SAMPLE_RATE) for s,e in segments]
|
89 |
-
print(segments)
|
90 |
-
audio_active = AudioSegment.silent(duration=0)
|
91 |
-
audio = AudioSegment.from_file(audio_path)
|
92 |
-
|
93 |
-
for start_time, end_time in segments:
|
94 |
-
audio_active += audio[int( start_time * 1000) : int(end_time * 1000)]
|
95 |
-
|
96 |
-
audio_dur = audio_active.duration_seconds
|
97 |
-
print(f'after vad: dur = {audio_dur}')
|
98 |
-
target_folder = os.path.join(target_dir, audio_name)
|
99 |
-
wavs_folder = os.path.join(target_folder, 'wavs')
|
100 |
-
os.makedirs(wavs_folder, exist_ok=True)
|
101 |
-
start_time = 0.
|
102 |
-
count = 0
|
103 |
-
num_splits = int(np.round(audio_dur / split_seconds))
|
104 |
-
assert num_splits > 0, 'input audio is too short'
|
105 |
-
interval = audio_dur / num_splits
|
106 |
-
|
107 |
-
for i in range(num_splits):
|
108 |
-
end_time = min(start_time + interval, audio_dur)
|
109 |
-
if i == num_splits - 1:
|
110 |
-
end_time = audio_dur
|
111 |
-
output_file = f"{wavs_folder}/{audio_name}_seg{count}.wav"
|
112 |
-
audio_seg = audio_active[int(start_time * 1000): int(end_time * 1000)]
|
113 |
-
audio_seg.export(output_file, format='wav')
|
114 |
-
start_time = end_time
|
115 |
-
count += 1
|
116 |
-
return wavs_folder
|
117 |
-
|
118 |
-
def hash_numpy_array(audio_path):
|
119 |
-
array, _ = librosa.load(audio_path, sr=None, mono=True)
|
120 |
-
# Convert the array to bytes
|
121 |
-
array_bytes = array.tobytes()
|
122 |
-
# Calculate the hash of the array bytes
|
123 |
-
hash_object = hashlib.sha256(array_bytes)
|
124 |
-
hash_value = hash_object.digest()
|
125 |
-
# Convert the hash value to base64
|
126 |
-
base64_value = base64.b64encode(hash_value)
|
127 |
-
return base64_value.decode('utf-8')[:16].replace('/', '_^')
|
128 |
-
|
129 |
-
def get_se(audio_path, vc_model, target_dir='processed', vad=True):
|
130 |
-
device = vc_model.device
|
131 |
-
version = vc_model.version
|
132 |
-
print("OpenVoice version:", version)
|
133 |
-
|
134 |
-
audio_name = f"{os.path.basename(audio_path).rsplit('.', 1)[0]}_{version}_{hash_numpy_array(audio_path)}"
|
135 |
-
se_path = os.path.join(target_dir, audio_name, 'se.pth')
|
136 |
-
|
137 |
-
# if os.path.isfile(se_path):
|
138 |
-
# se = torch.load(se_path).to(device)
|
139 |
-
# return se, audio_name
|
140 |
-
# if os.path.isdir(audio_path):
|
141 |
-
# wavs_folder = audio_path
|
142 |
-
|
143 |
-
if vad:
|
144 |
-
wavs_folder = split_audio_vad(audio_path, target_dir=target_dir, audio_name=audio_name)
|
145 |
-
else:
|
146 |
-
wavs_folder = split_audio_whisper(audio_path, target_dir=target_dir, audio_name=audio_name)
|
147 |
-
|
148 |
-
audio_segs = glob(f'{wavs_folder}/*.wav')
|
149 |
-
if len(audio_segs) == 0:
|
150 |
-
raise NotImplementedError('No audio segments found!')
|
151 |
-
|
152 |
-
return vc_model.extract_se(audio_segs, se_save_path=se_path), audio_name
|
153 |
-
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import torch
|
4 |
+
import hashlib
|
5 |
+
import librosa
|
6 |
+
import base64
|
7 |
+
from glob import glob
|
8 |
+
import numpy as np
|
9 |
+
from pydub import AudioSegment
|
10 |
+
from faster_whisper import WhisperModel
|
11 |
+
import hashlib
|
12 |
+
import base64
|
13 |
+
import librosa
|
14 |
+
from whisper_timestamped.transcribe import get_audio_tensor, get_vad_segments
|
15 |
+
|
16 |
+
model_size = "medium"
|
17 |
+
# Run on GPU with FP16
|
18 |
+
model = None
|
19 |
+
def split_audio_whisper(audio_path, audio_name, target_dir='processed'):
|
20 |
+
global model
|
21 |
+
if model is None:
|
22 |
+
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
23 |
+
audio = AudioSegment.from_file(audio_path)
|
24 |
+
max_len = len(audio)
|
25 |
+
|
26 |
+
target_folder = os.path.join(target_dir, audio_name)
|
27 |
+
|
28 |
+
segments, info = model.transcribe(audio_path, beam_size=5, word_timestamps=True)
|
29 |
+
segments = list(segments)
|
30 |
+
|
31 |
+
# create directory
|
32 |
+
os.makedirs(target_folder, exist_ok=True)
|
33 |
+
wavs_folder = os.path.join(target_folder, 'wavs')
|
34 |
+
os.makedirs(wavs_folder, exist_ok=True)
|
35 |
+
|
36 |
+
# segments
|
37 |
+
s_ind = 0
|
38 |
+
start_time = None
|
39 |
+
|
40 |
+
for k, w in enumerate(segments):
|
41 |
+
# process with the time
|
42 |
+
if k == 0:
|
43 |
+
start_time = max(0, w.start)
|
44 |
+
|
45 |
+
end_time = w.end
|
46 |
+
|
47 |
+
# calculate confidence
|
48 |
+
if len(w.words) > 0:
|
49 |
+
confidence = sum([s.probability for s in w.words]) / len(w.words)
|
50 |
+
else:
|
51 |
+
confidence = 0.
|
52 |
+
# clean text
|
53 |
+
text = w.text.replace('...', '')
|
54 |
+
|
55 |
+
# left 0.08s for each audios
|
56 |
+
audio_seg = audio[int( start_time * 1000) : min(max_len, int(end_time * 1000) + 80)]
|
57 |
+
|
58 |
+
# segment file name
|
59 |
+
fname = f"{audio_name}_seg{s_ind}.wav"
|
60 |
+
|
61 |
+
# filter out the segment shorter than 1.5s and longer than 20s
|
62 |
+
save = audio_seg.duration_seconds > 1.5 and \
|
63 |
+
audio_seg.duration_seconds < 20. and \
|
64 |
+
len(text) >= 2 and len(text) < 200
|
65 |
+
|
66 |
+
if save:
|
67 |
+
output_file = os.path.join(wavs_folder, fname)
|
68 |
+
audio_seg.export(output_file, format='wav')
|
69 |
+
|
70 |
+
if k < len(segments) - 1:
|
71 |
+
start_time = max(0, segments[k+1].start - 0.08)
|
72 |
+
|
73 |
+
s_ind = s_ind + 1
|
74 |
+
return wavs_folder
|
75 |
+
|
76 |
+
|
77 |
+
def split_audio_vad(audio_path, audio_name, target_dir, split_seconds=10.0):
|
78 |
+
SAMPLE_RATE = 16000
|
79 |
+
audio_vad = get_audio_tensor(audio_path)
|
80 |
+
segments = get_vad_segments(
|
81 |
+
audio_vad,
|
82 |
+
output_sample=True,
|
83 |
+
min_speech_duration=0.1,
|
84 |
+
min_silence_duration=1,
|
85 |
+
method="silero",
|
86 |
+
)
|
87 |
+
segments = [(seg["start"], seg["end"]) for seg in segments]
|
88 |
+
segments = [(float(s) / SAMPLE_RATE, float(e) / SAMPLE_RATE) for s,e in segments]
|
89 |
+
print(segments)
|
90 |
+
audio_active = AudioSegment.silent(duration=0)
|
91 |
+
audio = AudioSegment.from_file(audio_path)
|
92 |
+
|
93 |
+
for start_time, end_time in segments:
|
94 |
+
audio_active += audio[int( start_time * 1000) : int(end_time * 1000)]
|
95 |
+
|
96 |
+
audio_dur = audio_active.duration_seconds
|
97 |
+
print(f'after vad: dur = {audio_dur}')
|
98 |
+
target_folder = os.path.join(target_dir, audio_name)
|
99 |
+
wavs_folder = os.path.join(target_folder, 'wavs')
|
100 |
+
os.makedirs(wavs_folder, exist_ok=True)
|
101 |
+
start_time = 0.
|
102 |
+
count = 0
|
103 |
+
num_splits = int(np.round(audio_dur / split_seconds))
|
104 |
+
assert num_splits > 0, 'input audio is too short'
|
105 |
+
interval = audio_dur / num_splits
|
106 |
+
|
107 |
+
for i in range(num_splits):
|
108 |
+
end_time = min(start_time + interval, audio_dur)
|
109 |
+
if i == num_splits - 1:
|
110 |
+
end_time = audio_dur
|
111 |
+
output_file = f"{wavs_folder}/{audio_name}_seg{count}.wav"
|
112 |
+
audio_seg = audio_active[int(start_time * 1000): int(end_time * 1000)]
|
113 |
+
audio_seg.export(output_file, format='wav')
|
114 |
+
start_time = end_time
|
115 |
+
count += 1
|
116 |
+
return wavs_folder
|
117 |
+
|
118 |
+
def hash_numpy_array(audio_path):
|
119 |
+
array, _ = librosa.load(audio_path, sr=None, mono=True)
|
120 |
+
# Convert the array to bytes
|
121 |
+
array_bytes = array.tobytes()
|
122 |
+
# Calculate the hash of the array bytes
|
123 |
+
hash_object = hashlib.sha256(array_bytes)
|
124 |
+
hash_value = hash_object.digest()
|
125 |
+
# Convert the hash value to base64
|
126 |
+
base64_value = base64.b64encode(hash_value)
|
127 |
+
return base64_value.decode('utf-8')[:16].replace('/', '_^')
|
128 |
+
|
129 |
+
def get_se(audio_path, vc_model, target_dir='processed', vad=True):
|
130 |
+
device = vc_model.device
|
131 |
+
version = vc_model.version
|
132 |
+
print("OpenVoice version:", version)
|
133 |
+
|
134 |
+
audio_name = f"{os.path.basename(audio_path).rsplit('.', 1)[0]}_{version}_{hash_numpy_array(audio_path)}"
|
135 |
+
se_path = os.path.join(target_dir, audio_name, 'se.pth')
|
136 |
+
|
137 |
+
# if os.path.isfile(se_path):
|
138 |
+
# se = torch.load(se_path).to(device)
|
139 |
+
# return se, audio_name
|
140 |
+
# if os.path.isdir(audio_path):
|
141 |
+
# wavs_folder = audio_path
|
142 |
+
|
143 |
+
if vad:
|
144 |
+
wavs_folder = split_audio_vad(audio_path, target_dir=target_dir, audio_name=audio_name)
|
145 |
+
else:
|
146 |
+
wavs_folder = split_audio_whisper(audio_path, target_dir=target_dir, audio_name=audio_name)
|
147 |
+
|
148 |
+
audio_segs = glob(f'{wavs_folder}/*.wav')
|
149 |
+
if len(audio_segs) == 0:
|
150 |
+
raise NotImplementedError('No audio segments found!')
|
151 |
+
|
152 |
+
return vc_model.extract_se(audio_segs, se_save_path=se_path), audio_name
|
153 |
+
|