Upload 2 files
Browse files- parsing.py +281 -0
- rachel_friends.csv +0 -0
parsing.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""parsing.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1thvkAz498jADcaVirJG91V-3-XBhdkq1
|
8 |
+
"""
|
9 |
+
|
10 |
+
import requests
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
|
13 |
+
import re
|
14 |
+
import os
|
15 |
+
|
16 |
+
import pandas as pd
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
from tqdm import tqdm
|
20 |
+
|
21 |
+
def get_transcripts_from_url(url):
|
22 |
+
# Send a GET request to the URL and retrieve the webpage content
|
23 |
+
response = requests.get(url)
|
24 |
+
|
25 |
+
# Parse the HTML content using Beautiful Soup
|
26 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
27 |
+
|
28 |
+
# Find elements by tag name
|
29 |
+
titles = soup.find_all('li')
|
30 |
+
|
31 |
+
# names for series
|
32 |
+
transcript_paths = []
|
33 |
+
# Extract text from elements
|
34 |
+
for title in titles:
|
35 |
+
a = title.find('a')
|
36 |
+
|
37 |
+
path = a.get("href")
|
38 |
+
|
39 |
+
transcript_paths.append("https://fangj.github.io/friends/" + path)
|
40 |
+
|
41 |
+
return transcript_paths
|
42 |
+
|
43 |
+
def get_text_from_html(url):
|
44 |
+
path = url
|
45 |
+
response = requests.get(path)
|
46 |
+
html_content = response.text
|
47 |
+
|
48 |
+
# Parse HTML content
|
49 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
50 |
+
|
51 |
+
transcript = soup.find_all('p')
|
52 |
+
|
53 |
+
transcript_name = path.split("/")[-1].replace(".html", ".txt")
|
54 |
+
|
55 |
+
with open(os.path.join("friends_raw_scripts", transcript_name), 'w', encoding='utf-8') as file:
|
56 |
+
text = soup.get_text(strip=False).lower().replace("'", ""). replace('"', "").replace("\xa0", "")
|
57 |
+
file.write(text + "\n")
|
58 |
+
|
59 |
+
return transcript_name
|
60 |
+
|
61 |
+
def clean_and_write_text(transcript_name):
|
62 |
+
|
63 |
+
char = []
|
64 |
+
texts = []
|
65 |
+
flag = None
|
66 |
+
pattern = re.compile(r'\b\w+:')
|
67 |
+
|
68 |
+
with open(os.path.join("friends_raw_scripts", transcript_name), 'r', encoding='utf-8') as file:
|
69 |
+
final_transcript = file.readlines()
|
70 |
+
|
71 |
+
skip_lines = 10
|
72 |
+
pattern = re.compile(r'\b\w+:')
|
73 |
+
scene_words = ["commercial break", "closing credits", "opening credits", "end"]
|
74 |
+
for ind in range(1, len(final_transcript) - 1):
|
75 |
+
final_list = []
|
76 |
+
|
77 |
+
pre_line = final_transcript[ind - 1].strip()
|
78 |
+
cur_line = final_transcript[ind].strip()
|
79 |
+
next_line = final_transcript[ind + 1].strip()
|
80 |
+
|
81 |
+
next_condition = re.sub(r"\([^()]*\)|\[[^\[\]]*\]", '', next_line).strip()
|
82 |
+
cur_conditon = re.sub(r"\([^()]*\)|\[[^\[\]]*\]", '', cur_line).strip()
|
83 |
+
|
84 |
+
if sum([bool(pre_line), bool(cur_line), bool(next_line)]) == 1:
|
85 |
+
continue
|
86 |
+
|
87 |
+
elif cur_line in scene_words:
|
88 |
+
continue
|
89 |
+
|
90 |
+
elif "by:" in cur_line or "note:" in cur_line:
|
91 |
+
continue
|
92 |
+
|
93 |
+
elif "[" in cur_line or "]" in cur_line:
|
94 |
+
continue
|
95 |
+
|
96 |
+
elif not cur_conditon:
|
97 |
+
continue
|
98 |
+
|
99 |
+
elif pattern.search(cur_line) and flag == None:
|
100 |
+
name, text = cur_line.split(":", maxsplit=1)
|
101 |
+
char.append(name)
|
102 |
+
text = re.sub(r'\([^)]*\)', '', text)
|
103 |
+
text = text.strip()
|
104 |
+
flag = "char"
|
105 |
+
|
106 |
+
if pattern.search(next_line) or not next_condition or next_line in scene_words or "[" in next_line:
|
107 |
+
texts.append(text)
|
108 |
+
flag = None
|
109 |
+
|
110 |
+
if len(char) != len(texts):
|
111 |
+
print(ind)
|
112 |
+
print(char[-1], texts[-1])
|
113 |
+
|
114 |
+
elif cur_line and flag == 'char':
|
115 |
+
text += " " + cur_line
|
116 |
+
if pattern.search(next_line) or not next_condition or next_line in scene_words or "[" in next_line:
|
117 |
+
text = re.sub(r"\([^()]*\)|\[[^\[\]]*\]", '', text).strip()
|
118 |
+
texts.append(text)
|
119 |
+
flag = None
|
120 |
+
|
121 |
+
if len(char) != len(texts):
|
122 |
+
print(ind)
|
123 |
+
print(char[-1], texts[-1])
|
124 |
+
|
125 |
+
new_name = "pre_" + transcript_name
|
126 |
+
with open(os.path.join("friends_preprocessed_scripts", new_name), 'w', encoding='utf-8') as file:
|
127 |
+
for c, d in zip(char, texts):
|
128 |
+
file.write(f"{c}: {d}\n")
|
129 |
+
|
130 |
+
raw_texts_exists = False # change on False to download transcripts and preprocess them
|
131 |
+
# parse data from website to get txt transcripts
|
132 |
+
transcript_paths = get_transcripts_from_url("https://fangj.github.io/friends/")
|
133 |
+
|
134 |
+
transcript_paths[:10]
|
135 |
+
|
136 |
+
os.makedirs("friends_preprocessed_scripts", exist_ok=True)
|
137 |
+
os.makedirs("friends_raw_scripts", exist_ok=True)
|
138 |
+
|
139 |
+
# define list with certain scripts from south park
|
140 |
+
# dir_list = [file for file in os.listdir("./raw_scripts")]
|
141 |
+
if not raw_texts_exists:
|
142 |
+
print("Parse all scripts from this website https://fangj.github.io/friends/")
|
143 |
+
for path in tqdm(transcript_paths, desc='Total'):
|
144 |
+
transcript_name = get_text_from_html(path)
|
145 |
+
clean_and_write_text(transcript_name)
|
146 |
+
|
147 |
+
dir_list = [file for file in os.listdir("./friends_preprocessed_scripts")]
|
148 |
+
|
149 |
+
def df_scripts(path):
|
150 |
+
"""function take preprocessed_script.txt from dir and create dataframes"""
|
151 |
+
chars = []
|
152 |
+
texts = []
|
153 |
+
|
154 |
+
with open(os.path.join("friends_preprocessed_scripts", path), 'r', encoding="utf-8") as file:
|
155 |
+
for line in file:
|
156 |
+
char, text = line.split(":", 1)
|
157 |
+
chars.append(char)
|
158 |
+
texts.append(text.strip().lower())
|
159 |
+
|
160 |
+
df_name = path.replace("prep_SP_", "df_").replace(".txt", ".csv")
|
161 |
+
df = pd.DataFrame({'Characters': chars, 'Dialogs': texts})
|
162 |
+
df.to_csv(os.path.join("dataframes", "friends", df_name), index=False)
|
163 |
+
|
164 |
+
os.makedirs("dataframes/friends", exist_ok=True)
|
165 |
+
|
166 |
+
for preprocessed_script in dir_list:
|
167 |
+
df_scripts(preprocessed_script)
|
168 |
+
|
169 |
+
def collect_df(threshold=10):
|
170 |
+
"""function concatenate dataframes in one single dataframe"""
|
171 |
+
dfs = []
|
172 |
+
for file in os.listdir("dataframes/friends"):
|
173 |
+
dfs.append(pd.read_csv(os.path.join("dataframes", "friends", file)))
|
174 |
+
df = pd.concat(dfs, ignore_index=True).dropna().reset_index(drop=True)
|
175 |
+
# find characters with more than 10 texts
|
176 |
+
high_chars = df.Characters.value_counts()
|
177 |
+
high_chars_ind = high_chars[high_chars > threshold].index
|
178 |
+
df = df[df["Characters"].isin(high_chars_ind)]
|
179 |
+
# optional function to clean dialogs
|
180 |
+
print(f"Number of characters in dataframe {len(df.Characters.value_counts())}")
|
181 |
+
return df
|
182 |
+
|
183 |
+
"""### Which most frequent characters we can meet in the movie"""
|
184 |
+
|
185 |
+
def form_df(df, char):
|
186 |
+
# get indices where character is favorite_character
|
187 |
+
favorite_character_df = df[df.Characters == char] # .dropna()
|
188 |
+
favorite_character_ind = favorite_character_df.index.tolist()
|
189 |
+
|
190 |
+
# get indices where speech could be to favorite charecter
|
191 |
+
text_to_favorite_character_ind = (np.array(favorite_character_ind) - 1).tolist()
|
192 |
+
|
193 |
+
# form datasets with favorite charecter's dialogs and possible dialogs to favorite charecter
|
194 |
+
# favorite_character_dialog = df.iloc[favorite_character_ind] restore
|
195 |
+
favorite_character_dialog = df[df.index.isin(favorite_character_ind)]
|
196 |
+
# text_to_favorite_character = df.iloc[text_to_favorite_character_ind] restore# .dropna(subset=["Dialogs"])
|
197 |
+
text_to_favorite_character = df[df.index.isin(text_to_favorite_character_ind)]
|
198 |
+
# remove from text to cartman rows where speak Cartman
|
199 |
+
text_to_favorite_character = text_to_favorite_character[text_to_favorite_character["Characters"] != char]
|
200 |
+
|
201 |
+
# save data for debugging. Uncomment if necessary
|
202 |
+
# favorite_character_dialog.to_csv("test_favotite.csv", index=favorite_character_ind)
|
203 |
+
# text_to_favorite_character.to_csv("test_question.csv", index=text_to_favorite_character_ind)
|
204 |
+
|
205 |
+
# find in dialog_to_cartman lines with char "?"
|
206 |
+
# mask = text_to_favorite_character['Dialogs'].str.contains('\?')
|
207 |
+
# question_to_favorite_character = text_to_favorite_character[mask]
|
208 |
+
# if we want to get all texts to our favorite actor, then we leave text_to_favorite_character
|
209 |
+
question_to_favorite_character = text_to_favorite_character
|
210 |
+
|
211 |
+
# save data for debugging. Uncomment if necessary
|
212 |
+
# question_to_favorite_character.to_csv("question_to_favorite_character.csv")
|
213 |
+
|
214 |
+
question_to_favorite_character_ind = question_to_favorite_character.index.tolist()
|
215 |
+
true_answers_ind = (np.array(question_to_favorite_character_ind) + 1).tolist()
|
216 |
+
# favorite_character_answer = favorite_character_dialog.loc[true_answers_ind]
|
217 |
+
favorite_character_answer = favorite_character_dialog[favorite_character_dialog.index.isin(true_answers_ind)]
|
218 |
+
# save data for debugging. Uncomment if necessary
|
219 |
+
favorite_character_answer.to_csv("favorite_character_answer.csv")
|
220 |
+
|
221 |
+
# change name of columns for final dataframe
|
222 |
+
question_to_favorite_character = question_to_favorite_character.rename(
|
223 |
+
columns={"Characters": "questioner", "Dialogs": "question"})
|
224 |
+
favorite_character_answer = favorite_character_answer.rename(columns={"Characters": "answerer", "Dialogs": "answer"}) # char or answerer !!!!!!
|
225 |
+
|
226 |
+
question_to_favorite_character.reset_index(inplace=True, drop=True)
|
227 |
+
favorite_character_answer.reset_index(inplace=True, drop=True)
|
228 |
+
|
229 |
+
df = pd.concat([question_to_favorite_character, favorite_character_answer], axis=1)
|
230 |
+
|
231 |
+
return df
|
232 |
+
|
233 |
+
def form_df_negative(df, df_char, char):
|
234 |
+
# get from form_df true data, but without labels. At this step define label = 1 for all sentences
|
235 |
+
true_label = pd.DataFrame({"label": np.ones(shape=len(df_char), dtype=np.int8)})
|
236 |
+
# add from the right side new columns with labels
|
237 |
+
df_true_labels = pd.concat([df_char, true_label], axis=1)
|
238 |
+
|
239 |
+
|
240 |
+
# find text for this random_character and without questions
|
241 |
+
# favorite_character_df = df[df.Characters == random_char].str.contains('\?')
|
242 |
+
random_character_df = df[df.Characters != char].reset_index(drop=True)
|
243 |
+
|
244 |
+
indices = np.random.choice(np.arange(len(random_character_df)), size=(len(df_true_labels)), replace=False)
|
245 |
+
random_character_df = random_character_df[random_character_df.index.isin(indices)]
|
246 |
+
df_negative_labels = df_true_labels.drop(columns="label", axis=1)
|
247 |
+
df_negative_labels["answer"] = random_character_df["Dialogs"].reset_index(drop=True)
|
248 |
+
df_negative_labels = df_negative_labels.rename(columns={"Dialogs": "question"})
|
249 |
+
|
250 |
+
negative_label = pd.DataFrame({"label": np.zeros(shape=len(df_char), dtype=np.int8)})
|
251 |
+
df_negative_labels = pd.concat([df_negative_labels, negative_label], axis=1)
|
252 |
+
|
253 |
+
# fincal concatenation of dataframes with true and negative labels
|
254 |
+
final_df = pd.concat([df_negative_labels, df_true_labels], axis=0)
|
255 |
+
|
256 |
+
|
257 |
+
# How to shuffle data in pandas dataframe
|
258 |
+
final_df = final_df.sample(frac=1).reset_index(drop=True)
|
259 |
+
|
260 |
+
return final_df
|
261 |
+
|
262 |
+
"""## Choose your favorite character"""
|
263 |
+
|
264 |
+
# concatenate data in one single dataframe
|
265 |
+
df = collect_df(threshold=10)
|
266 |
+
df.to_csv("full_trancscripts.csv", index=False)
|
267 |
+
|
268 |
+
# form the final dataset for tf-idf / word2vec, which no need labels between strings
|
269 |
+
characters = ["rachel", "ross", "chandler", "monica", "joey", "phoebe"]
|
270 |
+
|
271 |
+
for char in tqdm(characters):
|
272 |
+
df_char = form_df(df, char)
|
273 |
+
# create final dataframe
|
274 |
+
df_char.to_csv(char + "_friends.csv", index=False)
|
275 |
+
|
276 |
+
df_char_label = form_df_negative(df, df_char, char)
|
277 |
+
df_char_label.to_csv(char + "_friends_label.csv", index=False)
|
278 |
+
|
279 |
+
print("script created")
|
280 |
+
|
281 |
+
|
rachel_friends.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|