Martin Jurkovic commited on
Commit
9446fe5
·
1 Parent(s): 56140d5

Code cleanup

Browse files
app.py CHANGED
@@ -7,7 +7,6 @@ from huggingface_hub import snapshot_download
7
  from src.about import (
8
  CITATION_BUTTON_LABEL,
9
  CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
  INTRODUCTION_TEXT,
12
  LLM_BENCHMARKS_TEXT,
13
  TITLE,
@@ -16,52 +15,35 @@ from src.display.css_html_js import custom_css
16
  from src.display.utils import (
17
  BENCHMARK_COLS,
18
  COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
  AutoEvalColumn,
22
  singletable_AutoEvalColumn,
23
  singlecolumn_AutoEvalColumn,
24
  ModelType,
25
  fields,
26
- # WeightType,
27
- # Precision
28
  )
29
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
30
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
- from src.submission.submit import add_new_eval
32
 
33
 
34
  def restart_space():
35
  API.restart_space(repo_id=REPO_ID)
36
 
37
  ### Space initialisation
38
- try:
39
- print(EVAL_REQUESTS_PATH)
40
- snapshot_download(
41
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
42
- )
43
- except Exception:
44
- restart_space()
45
  try:
46
  print(EVAL_RESULTS_PATH)
47
  snapshot_download(
48
  repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
49
  )
50
- except Exception:
51
- restart_space()
 
 
 
52
 
53
 
54
  SINGLECOLUMN_LEADERBOARD_DF, SINGLETABLE_LEADERBOARD_DF, MULTITABLE_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
55
 
56
- (
57
- finished_eval_queue_df,
58
- running_eval_queue_df,
59
- pending_eval_queue_df,
60
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
61
-
62
  def init_multitable_leaderboard(dataframe):
63
- if dataframe is None or dataframe.empty:
64
- raise ValueError("Leaderboard DataFrame is empty or None.")
65
  return Leaderboard(
66
  value=dataframe,
67
  datatype=[c.type for c in fields(AutoEvalColumn)],
@@ -70,30 +52,17 @@ def init_multitable_leaderboard(dataframe):
70
  cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
71
  label="Select Columns to Display:",
72
  ),
73
- search_columns=[AutoEvalColumn.model.name], # AutoEvalColumn.license.name],
74
  hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
75
  filter_columns=[
76
  ColumnFilter(AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"),
77
  ColumnFilter(AutoEvalColumn.model.name, type="checkboxgroup", label="Models"),
78
- # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
79
- # ColumnFilter(
80
- # AutoEvalColumn.params.name,
81
- # type="slider",
82
- # min=0.01,
83
- # max=150,
84
- # label="Select the number of parameters (B)",
85
- # ),
86
- # ColumnFilter(
87
- # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
88
- # ),
89
  ],
90
  bool_checkboxgroup_label="Hide models",
91
  interactive=False,
92
  )
93
 
94
  def init_singletable_leaderboard(dataframe):
95
- if dataframe is None or dataframe.empty:
96
- raise ValueError("Leaderboard DataFrame is empty or None.")
97
  return Leaderboard(
98
  value=dataframe,
99
  datatype=[c.type for c in fields(singletable_AutoEvalColumn)],
@@ -102,7 +71,7 @@ def init_singletable_leaderboard(dataframe):
102
  cant_deselect=[c.name for c in fields(singletable_AutoEvalColumn) if c.never_hidden],
103
  label="Select Columns to Display:",
104
  ),
105
- search_columns=[singletable_AutoEvalColumn.model.name], # AutoEvalColumn.license.name],
106
  hide_columns=[c.name for c in fields(singletable_AutoEvalColumn) if c.hidden],
107
  filter_columns=[
108
  ColumnFilter(singletable_AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"),
@@ -113,8 +82,6 @@ def init_singletable_leaderboard(dataframe):
113
  )
114
 
115
  def init_singlecolumn_leaderboard(dataframe):
116
- if dataframe is None or dataframe.empty:
117
- raise ValueError("Leaderboard DataFrame is empty or None.")
118
  return Leaderboard(
119
  value=dataframe,
120
  datatype=[c.type for c in fields(singlecolumn_AutoEvalColumn)],
@@ -123,7 +90,7 @@ def init_singlecolumn_leaderboard(dataframe):
123
  cant_deselect=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.never_hidden],
124
  label="Select Columns to Display:",
125
  ),
126
- search_columns=[singlecolumn_AutoEvalColumn.model.name], # AutoEvalColumn.license.name],
127
  hide_columns=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.hidden],
128
  filter_columns=[
129
  ColumnFilter(singlecolumn_AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"),
@@ -150,8 +117,6 @@ with demo:
150
  with gr.TabItem("🏅 SingleColumn", elem_id="syntherela-benchmark-tab-table", id=2):
151
  singlecolumn_leaderboard = init_singlecolumn_leaderboard(SINGLECOLUMN_LEADERBOARD_DF)
152
 
153
-
154
-
155
  with gr.TabItem("📝 About", elem_id="syntherela-benchmark-tab-table", id=3):
156
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
157
 
 
7
  from src.about import (
8
  CITATION_BUTTON_LABEL,
9
  CITATION_BUTTON_TEXT,
 
10
  INTRODUCTION_TEXT,
11
  LLM_BENCHMARKS_TEXT,
12
  TITLE,
 
15
  from src.display.utils import (
16
  BENCHMARK_COLS,
17
  COLS,
 
 
18
  AutoEvalColumn,
19
  singletable_AutoEvalColumn,
20
  singlecolumn_AutoEvalColumn,
21
  ModelType,
22
  fields,
 
 
23
  )
24
+ from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
25
+ from src.populate import get_leaderboard_df
 
26
 
27
 
28
  def restart_space():
29
  API.restart_space(repo_id=REPO_ID)
30
 
31
  ### Space initialisation
 
 
 
 
 
 
 
32
  try:
33
  print(EVAL_RESULTS_PATH)
34
  snapshot_download(
35
  repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
36
  )
37
+ except Exception as e:
38
+ print(f"Error downloading results: {e}")
39
+ # Create the directory if it doesn't exist
40
+ import os
41
+ os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
42
 
43
 
44
  SINGLECOLUMN_LEADERBOARD_DF, SINGLETABLE_LEADERBOARD_DF, MULTITABLE_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
45
 
 
 
 
 
 
 
46
  def init_multitable_leaderboard(dataframe):
 
 
47
  return Leaderboard(
48
  value=dataframe,
49
  datatype=[c.type for c in fields(AutoEvalColumn)],
 
52
  cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
53
  label="Select Columns to Display:",
54
  ),
55
+ search_columns=[AutoEvalColumn.model.name],
56
  hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
57
  filter_columns=[
58
  ColumnFilter(AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"),
59
  ColumnFilter(AutoEvalColumn.model.name, type="checkboxgroup", label="Models"),
 
 
 
 
 
 
 
 
 
 
 
60
  ],
61
  bool_checkboxgroup_label="Hide models",
62
  interactive=False,
63
  )
64
 
65
  def init_singletable_leaderboard(dataframe):
 
 
66
  return Leaderboard(
67
  value=dataframe,
68
  datatype=[c.type for c in fields(singletable_AutoEvalColumn)],
 
71
  cant_deselect=[c.name for c in fields(singletable_AutoEvalColumn) if c.never_hidden],
72
  label="Select Columns to Display:",
73
  ),
74
+ search_columns=[singletable_AutoEvalColumn.model.name],
75
  hide_columns=[c.name for c in fields(singletable_AutoEvalColumn) if c.hidden],
76
  filter_columns=[
77
  ColumnFilter(singletable_AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"),
 
82
  )
83
 
84
  def init_singlecolumn_leaderboard(dataframe):
 
 
85
  return Leaderboard(
86
  value=dataframe,
87
  datatype=[c.type for c in fields(singlecolumn_AutoEvalColumn)],
 
90
  cant_deselect=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.never_hidden],
91
  label="Select Columns to Display:",
92
  ),
93
+ search_columns=[singlecolumn_AutoEvalColumn.model.name],
94
  hide_columns=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.hidden],
95
  filter_columns=[
96
  ColumnFilter(singlecolumn_AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"),
 
117
  with gr.TabItem("🏅 SingleColumn", elem_id="syntherela-benchmark-tab-table", id=2):
118
  singlecolumn_leaderboard = init_singlecolumn_leaderboard(SINGLECOLUMN_LEADERBOARD_DF)
119
 
 
 
120
  with gr.TabItem("📝 About", elem_id="syntherela-benchmark-tab-table", id=3):
121
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
122
 
src/leaderboard/read_evals.py DELETED
@@ -1,196 +0,0 @@
1
- import glob
2
- import json
3
- import math
4
- import os
5
- from dataclasses import dataclass
6
-
7
- import dateutil
8
- import numpy as np
9
-
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks # Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
-
14
-
15
- @dataclass
16
- class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- # precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- # weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
-
35
- @classmethod
36
- def init_from_json_file(self, json_filepath):
37
- """Inits the result from the specific model result file"""
38
- with open(json_filepath) as fp:
39
- data = json.load(fp)
40
-
41
- config = data.get("config")
42
-
43
- # Precision
44
- # precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_" #{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_" # {precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- # precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- # self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
-
156
-
157
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
- """From the path of the results folder root, extract all needed info for results"""
159
- model_result_filepaths = []
160
-
161
- for root, _, files in os.walk(results_path):
162
- # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
165
-
166
- # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
-
172
- for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
174
-
175
- eval_results = {}
176
- for model_result_filepath in model_result_filepaths:
177
- # Creation of result
178
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
- # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
187
-
188
- results = []
189
- for v in eval_results.values():
190
- try:
191
- v.to_dict() # we test if the dict version is complete
192
- results.append(v)
193
- except KeyError: # not all eval values present
194
- continue
195
-
196
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/populate.py CHANGED
@@ -4,9 +4,8 @@ import os
4
  import pandas as pd
5
  import numpy as np
6
 
7
- from src.display.formatting import has_no_nan_values, make_clickable_model
8
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
9
- from src.leaderboard.read_evals import get_raw_eval_results
10
  from src.about import Tasks, SingleTableTasks, SingleColumnTasks
11
 
12
 
 
4
  import pandas as pd
5
  import numpy as np
6
 
7
+ from src.display.formatting import make_clickable_model
8
+ from src.display.utils import EvalQueueColumn
 
9
  from src.about import Tasks, SingleTableTasks, SingleColumnTasks
10
 
11
 
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )