import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, AutoEvalColumn, singletable_AutoEvalColumn, singlecolumn_AutoEvalColumn, ModelType, fields, ) from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_leaderboard_df def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialisation try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception as e: print(f"Error downloading results: {e}") # Create the directory if it doesn't exist import os os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) SINGLECOLUMN_LEADERBOARD_DF, SINGLETABLE_LEADERBOARD_DF, MULTITABLE_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) def init_multitable_leaderboard(dataframe): return Leaderboard( value=dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], label="Select Columns to Display:", ), search_columns=[AutoEvalColumn.model.name], hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], filter_columns=[ ColumnFilter(AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"), ColumnFilter(AutoEvalColumn.model.name, type="checkboxgroup", label="Models"), ], bool_checkboxgroup_label="Hide models", interactive=False, ) def init_singletable_leaderboard(dataframe): return Leaderboard( value=dataframe, datatype=[c.type for c in fields(singletable_AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(singletable_AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(singletable_AutoEvalColumn) if c.never_hidden], label="Select Columns to Display:", ), search_columns=[singletable_AutoEvalColumn.model.name], hide_columns=[c.name for c in fields(singletable_AutoEvalColumn) if c.hidden], filter_columns=[ ColumnFilter(singletable_AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"), ColumnFilter(singletable_AutoEvalColumn.model.name, type="checkboxgroup", label="Models"), ], bool_checkboxgroup_label="Hide models", interactive=False, ) def init_singlecolumn_leaderboard(dataframe): return Leaderboard( value=dataframe, datatype=[c.type for c in fields(singlecolumn_AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.never_hidden], label="Select Columns to Display:", ), search_columns=[singlecolumn_AutoEvalColumn.model.name], hide_columns=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.hidden], filter_columns=[ ColumnFilter(singlecolumn_AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"), ColumnFilter(singlecolumn_AutoEvalColumn.table.name, type="checkboxgroup", label="Tables"), ColumnFilter(singlecolumn_AutoEvalColumn.model.name, type="checkboxgroup", label="Models"), ], bool_checkboxgroup_label="Hide models", interactive=False, ) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 MultiTable", elem_id="syntherela-benchmark-tab-table", id=0): leaderboard = init_multitable_leaderboard(MULTITABLE_LEADERBOARD_DF) with gr.TabItem("🏅 SingleTable", elem_id="syntherela-benchmark-tab-table", id=1): singletable_leaderboard = init_singletable_leaderboard(SINGLETABLE_LEADERBOARD_DF) with gr.TabItem("🏅 SingleColumn", elem_id="syntherela-benchmark-tab-table", id=2): singlecolumn_leaderboard = init_singlecolumn_leaderboard(SINGLECOLUMN_LEADERBOARD_DF) with gr.TabItem("📝 About", elem_id="syntherela-benchmark-tab-table", id=3): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=8, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()