Mantis / app_idefics2.py
DongfuJiang's picture
update
285e0ce
raw
history blame contribute delete
9.74 kB
import gradio as gr
import spaces
import time
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers.image_utils import load_image
from typing import List
processor = AutoProcessor.from_pretrained("TIGER-Lab/Mantis-8B-Idefics2")
model = AutoModelForVision2Seq.from_pretrained("TIGER-Lab/Mantis-8B-Idefics2", torch_dtype=torch.bfloat16)
@spaces.GPU
def generate_stream(text:str, images:List[Image.Image], history: List[dict], **kwargs):
global processor, model
model.to("cuda")
if not images:
images = None
prompt = processor.apply_chat_template(history, add_generation_prompt=True)
print("Prompt: ")
print(prompt)
print("Images: ")
print(images)
inputs = processor(text=prompt, images=images, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
from transformers import TextIteratorStreamer
from threading import Thread
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
kwargs["streamer"] = streamer
inputs.update(kwargs)
thread = Thread(target=model.generate, kwargs=inputs)
thread.start()
output = ""
for _output in streamer:
output += _output
yield output
def enable_next_image(uploaded_images, image):
uploaded_images.append(image)
return uploaded_images, gr.MultimodalTextbox(value=None, interactive=False)
def add_message(history, message):
if message["files"]:
for file in message["files"]:
history.append([(file,), None])
if message["text"]:
history.append([message["text"], None])
return history, gr.MultimodalTextbox(value=None)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def get_chat_images(history):
images = []
for message in history:
if isinstance(message[0], tuple):
image = load_image(message[0][0])
images.append(image)
return images
def get_chat_history(history):
images = get_chat_images(history)
messages = []
cur_image_idx = 0
for i, message in enumerate(history):
if isinstance(message[0], str):
num_images = message[0].count("<image>")
messages.append(
{
"role": "user",
"content": []
}
)
print(num_images, cur_image_idx, len(images))
assert num_images + cur_image_idx <= len(images), f"Number of images uploaded is less than the number of <image> placeholders in the text. Please upload more images."
if num_images > 0:
split_text = message[0].split("<image>")
if split_text[0].strip():
messages[-1]["content"].append({"type": "text", "text": split_text[0].strip()})
for idx in range(num_images):
messages[-1]["content"].append({"type": "image"})
if split_text[idx + 1].strip():
messages[-1]["content"].append({"type": "text", "text": split_text[idx + 1].strip()})
else:
messages[-1]["content"].append({"type": "text", "text": message[0]})
if message[1]:
messages.append(
{
"role": "assistant",
"content": [{"type": "text", "text": message[1]}]
}
)
elif isinstance(message[0], tuple):
pass
return messages, images
def bot(history):
cur_messages = {"text": "", "images": []}
for message in history[::-1]:
if message[1]:
break
if isinstance(message[0], str):
cur_messages["text"] = message[0] + " " + cur_messages["text"]
elif isinstance(message[0], tuple):
cur_messages["images"].extend(message[0])
cur_messages["text"] = cur_messages["text"].strip()
cur_messages["images"] = cur_messages["images"][::-1]
if not cur_messages["text"]:
raise gr.Error("Please enter a message")
if cur_messages['text'].count("<image>") < len(cur_messages['images']):
gr.Warning("The number of images uploaded is more than the number of <image> placeholders in the text. Will automatically prepend <image> to the text.")
cur_messages['text'] = "<image> "* (len(cur_messages['images']) - cur_messages['text'].count("<image>")) + cur_messages['text']
history[-1][0] = cur_messages["text"]
if cur_messages['text'].count("<image>") > len(cur_messages['images']):
gr.Warning("The number of images uploaded is less than the number of <image> placeholders in the text. Will automatically remove extra <image> placeholders from the text.")
cur_messages['text'] = cur_messages['text'][::-1].replace("<image>"[::-1], "", cur_messages['text'].count("<image>") - len(cur_messages['images']))[::-1]
history[-1][0] = cur_messages["text"]
chat_history, chat_images = get_chat_history(history)
generation_kwargs = {
"max_new_tokens": 4096,
"num_beams": 1,
"do_sample": False
}
response = generate_stream(None, chat_images, chat_history, **generation_kwargs)
for _output in response:
history[-1][1] = _output
time.sleep(0.05)
yield history
def build_demo():
with gr.Blocks() as demo:
gr.Markdown(""" # Mantis
Mantis is a multimodal conversational AI model that can chat with users about images and text. It's optimized for multi-image reasoning, where inverleaved text and images can be used to generate responses.
### [Paper](https://arxiv.org/abs/2405.01483) | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | [Dataset](https://huggingface.co/datasets/TIGER-Lab/Mantis-Instruct) | [Website](https://tiger-ai-lab.github.io/Mantis/)
""")
gr.Markdown("""## Chat with Mantis
Mantis supports interleaved text-image input format, where you can simply use the placeholder `<image>` to indicate the position of uploaded images.
The model is optimized for multi-image reasoning, while preserving the ability to chat about text and images in a single conversation.
(The model currently serving is [🤗 TIGER-Lab/Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2))
""")
chatbot = gr.Chatbot(line_breaks=True)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload images. Please use <image> to indicate the position of uploaded images", show_label=True)
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
"""
with gr.Accordion(label='Advanced options', open=False):
temperature = gr.Slider(
label='Temperature',
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.2,
interactive=True
)
top_p = gr.Slider(
label='Top-p',
minimum=0.05,
maximum=1.0,
step=0.05,
value=1.0,
interactive=True
)
"""
bot_msg = chat_msg.success(bot, chatbot, chatbot, api_name="bot_response")
chatbot.like(print_like_dislike, None, None)
with gr.Row():
send_button = gr.Button("Send")
clear_button = gr.ClearButton([chatbot, chat_input])
send_button.click(
add_message, [chatbot, chat_input], [chatbot, chat_input]
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
gr.Examples(
examples=[
{
"text": "<image> <image> <image> Which image shows a different mood of character from the others?",
"files": ["./examples/image12.jpg", "./examples/image13.jpg", "./examples/image14.jpg"]
},
{
"text": "<image> <image> What's the difference between these two images? Please describe as much as you can.",
"files": ["./examples/image1.jpg", "./examples/image2.jpg"]
},
{
"text": "<image> <image> Which image shows an older dog?",
"files": ["./examples/image8.jpg", "./examples/image9.jpg"]
},
{
"text": "Write a description for the given image sequence in a single paragraph, what is happening in this episode?",
"files": ["./examples/image3.jpg", "./examples/image4.jpg", "./examples/image5.jpg", "./examples/image6.jpg", "./examples/image7.jpg"]
},
{
"text": "<image> <image> How many dices are there in image 1 and image 2 respectively?",
"files": ["./examples/image10.jpg", "./examples/image15.jpg"]
},
],
inputs=[chat_input],
)
gr.Markdown("""
## Citation
```
@article{jiang2024mantis,
title={MANTIS: Interleaved Multi-Image Instruction Tuning},
author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
journal={arXiv preprint arXiv:2405.01483},
year={2024}
}
```""")
return demo
if __name__ == "__main__":
demo = build_demo()
demo.launch()