T2V-Turbo-V2 / pipeline /t2v_turbo_vc2_pipeline.py
Ji4chenLi
initialize demo
5bec700
raw
history blame contribute delete
8.07 kB
import torch
from diffusers import DiffusionPipeline
from typing import List, Optional, Union, Dict, Any
from diffusers import logging
from diffusers.utils.torch_utils import randn_tensor
from lvdm.models.ddpm3d import LatentDiffusion
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class T2VTurboVC2Pipeline(DiffusionPipeline):
def __init__(
self,
pretrained_t2v: LatentDiffusion,
scheduler: T2VTurboScheduler,
model_config: Dict[str, Any] = None,
):
super().__init__()
self.register_modules(
pretrained_t2v=pretrained_t2v,
scheduler=scheduler,
)
self.vae = pretrained_t2v.first_stage_model
self.unet = pretrained_t2v.model.diffusion_model
self.text_encoder = pretrained_t2v.cond_stage_model
self.model_config = model_config
self.vae_scale_factor = 8
def _encode_prompt(
self,
prompt,
device,
num_videos_per_prompt,
prompt_embeds: None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_videos_per_prompt (`int`):
number of images that should be generated per prompt
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
"""
if prompt_embeds is None:
prompt_embeds = self.text_encoder(prompt)
prompt_embeds = prompt_embeds.to(device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(
bs_embed * num_videos_per_prompt, seq_len, -1
)
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
return prompt_embeds
def prepare_latents(
self,
batch_size,
num_channels_latents,
frames,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_channels_latents,
frames,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
"""
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps: torch.Tensor: generate embedding vectors at these timesteps
embedding_dim: int: dimension of the embeddings to generate
dtype: data type of the generated embeddings
Returns:
embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = 320,
width: Optional[int] = 512,
frames: int = 16,
fps: int = 16,
guidance_scale: float = 7.5,
motion_gs: float = 0.1,
use_motion_cond: bool = False,
percentage: float = 0.3,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
num_inference_steps: int = 4,
lcm_origin_steps: int = 50,
prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
):
unet_config = self.model_config["params"]["unet_config"]
# 0. Default height and width to unet
frames = self.pretrained_t2v.temporal_length if frames < 0 else frames
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_videos_per_prompt,
prompt_embeds=prompt_embeds,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variable
num_channels_latents = unet_config["params"]["in_channels"]
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
bs = batch_size * num_videos_per_prompt
context = {"context": torch.cat([prompt_embeds.to(self.dtype)], 1), "fps": fps}
# 6. Get Guidance Scale Embedding
w = torch.tensor(guidance_scale).repeat(bs)
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device)
context["timestep_cond"] = w_embedding.to(self.dtype)
ms_t_threshold = self.scheduler.config.num_train_timesteps * (1 - percentage)
# 7. LCM MultiStep Sampling Loop:
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
ts = torch.full((bs,), t, device=device, dtype=torch.long)
if use_motion_cond:
motion_gs_pt = torch.tensor(motion_gs).repeat(bs)
if t < ms_t_threshold:
motion_gs_pt = torch.zeros_like(motion_gs_pt)
motion_gs_embedding = self.get_w_embedding(
motion_gs_pt, embedding_dim=256, dtype=self.dtype
).to(device)
context["motion_cond"] = motion_gs_embedding
# model prediction (v-prediction, eps, x)
model_pred = self.unet(latents, ts, **context)
# compute the previous noisy sample x_t -> x_t-1
latents, denoised = self.scheduler.step(
model_pred, i, t, latents, generator=generator, return_dict=False
)
progress_bar.update()
if not output_type == "latent":
videos = self.pretrained_t2v.decode_first_stage_2DAE(denoised)
else:
videos = denoised
return videos