Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -444,32 +444,27 @@
|
|
444 |
# π₯ Run Streamlit App
|
445 |
# if __name__ == '__main__':
|
446 |
# main()
|
447 |
-
|
448 |
import streamlit as st
|
449 |
import os
|
450 |
import re
|
451 |
import torch
|
|
|
452 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
453 |
-
from PyPDF2 import PdfReader
|
454 |
from peft import get_peft_model, LoraConfig, TaskType
|
455 |
|
456 |
-
# β
Force CPU execution
|
457 |
-
|
458 |
-
os.environ["USE_TORCH_CPP_BACKEND"] = "1"
|
459 |
|
460 |
# πΉ Load IBM Granite Model (CPU-Compatible)
|
461 |
MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
462 |
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
except Exception as e:
|
471 |
-
st.error(f"π¨ Model loading failed: {str(e)}")
|
472 |
-
st.stop()
|
473 |
|
474 |
# πΉ Apply LoRA Fine-Tuning Configuration
|
475 |
lora_config = LoraConfig(
|
@@ -480,34 +475,23 @@ lora_config = LoraConfig(
|
|
480 |
bias="none",
|
481 |
task_type=TaskType.CAUSAL_LM
|
482 |
)
|
|
|
|
|
483 |
|
484 |
-
|
485 |
-
model = get_peft_model(model, lora_config)
|
486 |
-
model.eval()
|
487 |
-
except Exception as e:
|
488 |
-
st.error(f"π¨ LoRA model initialization failed: {str(e)}")
|
489 |
-
st.stop()
|
490 |
-
|
491 |
-
# π Function to Read & Extract Text from PDFs
|
492 |
def read_files(file):
|
493 |
-
"""Extracts text from uploaded PDF file."""
|
494 |
file_context = ""
|
495 |
-
|
496 |
-
reader = PdfReader(file)
|
497 |
for page in reader.pages:
|
498 |
text = page.extract_text()
|
499 |
if text:
|
500 |
file_context += text + "\n"
|
501 |
-
|
502 |
-
st.error(f"π¨ PDF reading failed: {str(e)}")
|
503 |
-
return ""
|
504 |
-
|
505 |
-
return file_context.strip() if file_context else "No readable text found in the document."
|
506 |
|
507 |
# π Function to Format AI Prompts
|
508 |
def format_prompt(system_msg, user_msg, file_context=""):
|
509 |
if file_context:
|
510 |
-
system_msg += " The user has provided a contract document.
|
511 |
return [
|
512 |
{"role": "system", "content": system_msg},
|
513 |
{"role": "user", "content": user_msg}
|
@@ -515,36 +499,31 @@ def format_prompt(system_msg, user_msg, file_context=""):
|
|
515 |
|
516 |
# π Function to Generate AI Responses
|
517 |
def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
|
518 |
-
|
519 |
-
try:
|
520 |
-
model_inputs = tokenizer([input_text], return_tensors="pt").to("cpu")
|
521 |
-
|
522 |
-
with torch.no_grad():
|
523 |
-
output = model.generate(
|
524 |
-
**model_inputs,
|
525 |
-
max_new_tokens=max_tokens,
|
526 |
-
do_sample=True,
|
527 |
-
top_p=top_p,
|
528 |
-
temperature=temperature,
|
529 |
-
num_return_sequences=1,
|
530 |
-
pad_token_id=tokenizer.eos_token_id
|
531 |
-
)
|
532 |
-
|
533 |
-
return tokenizer.decode(output[0], skip_special_tokens=True)
|
534 |
|
535 |
-
|
536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
538 |
# π Function to Clean AI Output
|
539 |
def post_process(text):
|
540 |
cleaned = re.sub(r'ζ₯+', '', text) # Remove unwanted symbols
|
541 |
lines = cleaned.splitlines()
|
542 |
unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
|
|
543 |
return "\n".join(unique_lines)
|
544 |
|
545 |
# π Function to Handle RAG with IBM Granite & Streamlit
|
546 |
def granite_simple(prompt, file):
|
547 |
-
"""Processes PDF and AI response."""
|
548 |
file_context = read_files(file) if file else ""
|
549 |
|
550 |
system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
@@ -557,7 +536,7 @@ def granite_simple(prompt, file):
|
|
557 |
|
558 |
# πΉ Streamlit UI
|
559 |
def main():
|
560 |
-
st.set_page_config(page_title="Contract Analysis AI", page_icon="π")
|
561 |
|
562 |
st.title("π AI-Powered Contract Analysis Tool")
|
563 |
st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
|
@@ -572,20 +551,27 @@ def main():
|
|
572 |
# πΉ File Upload Section
|
573 |
uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
574 |
|
575 |
-
if uploaded_file:
|
576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
|
578 |
if st.button("π Analyze Document"):
|
579 |
with st.spinner("Analyzing contract document... β³"):
|
580 |
-
final_answer = granite_simple(
|
581 |
-
"Perform a detailed analysis of the contract, highlighting risks, legal pitfalls, compliance issues, and potential disputes.",
|
582 |
-
uploaded_file
|
583 |
-
)
|
584 |
|
585 |
# πΉ Display Analysis Result
|
586 |
st.subheader("π Analysis Result")
|
587 |
st.write(final_answer)
|
588 |
|
|
|
|
|
|
|
589 |
# π₯ Run Streamlit App
|
590 |
if __name__ == '__main__':
|
591 |
main()
|
@@ -595,7 +581,6 @@ if __name__ == '__main__':
|
|
595 |
|
596 |
|
597 |
|
598 |
-
|
599 |
# import streamlit as st
|
600 |
# from PyPDF2 import PdfReader
|
601 |
|
|
|
444 |
# π₯ Run Streamlit App
|
445 |
# if __name__ == '__main__':
|
446 |
# main()
|
|
|
447 |
import streamlit as st
|
448 |
import os
|
449 |
import re
|
450 |
import torch
|
451 |
+
import pdfplumber
|
452 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
453 |
from peft import get_peft_model, LoraConfig, TaskType
|
454 |
|
455 |
+
# β
Force CPU execution for Streamlit Cloud
|
456 |
+
device = torch.device("cpu")
|
|
|
457 |
|
458 |
# πΉ Load IBM Granite Model (CPU-Compatible)
|
459 |
MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
460 |
|
461 |
+
model = AutoModelForCausalLM.from_pretrained(
|
462 |
+
MODEL_NAME,
|
463 |
+
device_map="cpu", # Force CPU execution
|
464 |
+
torch_dtype=torch.float32 # Use float32 since Streamlit runs on CPU
|
465 |
+
)
|
466 |
+
|
467 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
468 |
|
469 |
# πΉ Apply LoRA Fine-Tuning Configuration
|
470 |
lora_config = LoraConfig(
|
|
|
475 |
bias="none",
|
476 |
task_type=TaskType.CAUSAL_LM
|
477 |
)
|
478 |
+
model = get_peft_model(model, lora_config)
|
479 |
+
model.eval()
|
480 |
|
481 |
+
# π Function to Read & Extract Text from PDFs (Using pdfplumber)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
def read_files(file):
|
|
|
483 |
file_context = ""
|
484 |
+
with pdfplumber.open(file) as reader:
|
|
|
485 |
for page in reader.pages:
|
486 |
text = page.extract_text()
|
487 |
if text:
|
488 |
file_context += text + "\n"
|
489 |
+
return file_context.strip()
|
|
|
|
|
|
|
|
|
490 |
|
491 |
# π Function to Format AI Prompts
|
492 |
def format_prompt(system_msg, user_msg, file_context=""):
|
493 |
if file_context:
|
494 |
+
system_msg += " The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
|
495 |
return [
|
496 |
{"role": "system", "content": system_msg},
|
497 |
{"role": "user", "content": user_msg}
|
|
|
499 |
|
500 |
# π Function to Generate AI Responses
|
501 |
def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
|
502 |
+
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
|
504 |
+
with torch.no_grad():
|
505 |
+
output = model.generate(
|
506 |
+
**model_inputs,
|
507 |
+
max_new_tokens=max_tokens,
|
508 |
+
do_sample=True,
|
509 |
+
top_p=top_p,
|
510 |
+
temperature=temperature,
|
511 |
+
num_return_sequences=1,
|
512 |
+
pad_token_id=tokenizer.eos_token_id
|
513 |
+
)
|
514 |
+
|
515 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
516 |
|
517 |
# π Function to Clean AI Output
|
518 |
def post_process(text):
|
519 |
cleaned = re.sub(r'ζ₯+', '', text) # Remove unwanted symbols
|
520 |
lines = cleaned.splitlines()
|
521 |
unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
522 |
+
|
523 |
return "\n".join(unique_lines)
|
524 |
|
525 |
# π Function to Handle RAG with IBM Granite & Streamlit
|
526 |
def granite_simple(prompt, file):
|
|
|
527 |
file_context = read_files(file) if file else ""
|
528 |
|
529 |
system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
|
|
536 |
|
537 |
# πΉ Streamlit UI
|
538 |
def main():
|
539 |
+
st.set_page_config(page_title="Contract Analysis AI", page_icon="π", layout="wide")
|
540 |
|
541 |
st.title("π AI-Powered Contract Analysis Tool")
|
542 |
st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
|
|
|
551 |
# πΉ File Upload Section
|
552 |
uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
553 |
|
554 |
+
if uploaded_file is not None:
|
555 |
+
temp_file_path = "temp_uploaded_contract.pdf"
|
556 |
+
with open(temp_file_path, "wb") as f:
|
557 |
+
f.write(uploaded_file.getbuffer())
|
558 |
+
|
559 |
+
st.success("β
File uploaded successfully!")
|
560 |
+
|
561 |
+
# πΉ User Input for Analysis
|
562 |
+
user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
563 |
|
564 |
if st.button("π Analyze Document"):
|
565 |
with st.spinner("Analyzing contract document... β³"):
|
566 |
+
final_answer = granite_simple(user_prompt, temp_file_path)
|
|
|
|
|
|
|
567 |
|
568 |
# πΉ Display Analysis Result
|
569 |
st.subheader("π Analysis Result")
|
570 |
st.write(final_answer)
|
571 |
|
572 |
+
# πΉ Remove Temporary File
|
573 |
+
os.remove(temp_file_path)
|
574 |
+
|
575 |
# π₯ Run Streamlit App
|
576 |
if __name__ == '__main__':
|
577 |
main()
|
|
|
581 |
|
582 |
|
583 |
|
|
|
584 |
# import streamlit as st
|
585 |
# from PyPDF2 import PdfReader
|
586 |
|