text2svg-demo-app / metric.py
Jinglong Xiong
first commit
15369ca
raw
history blame contribute delete
19.9 kB
import ast
import io
import math
import statistics
import string
import cairosvg
import clip
import cv2
import kagglehub
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from more_itertools import chunked
from PIL import Image, ImageFilter
from transformers import (
AutoProcessor,
BitsAndBytesConfig,
PaliGemmaForConditionalGeneration,
)
svg_constraints = kagglehub.package_import('metric/svg-constraints')
class ParticipantVisibleError(Exception):
pass
def score(
solution: pd.DataFrame, submission: pd.DataFrame, row_id_column_name: str, random_seed: int = 0
) -> float:
"""Calculates a fidelity score by comparing generated SVG images to target text descriptions.
Parameters
----------
solution : pd.DataFrame
A DataFrame containing target questions, choices, and answers about an SVG image.
submission : pd.DataFrame
A DataFrame containing generated SVG strings. Must have a column named 'svg'.
row_id_column_name : str
The name of the column containing row identifiers. This column is removed before scoring.
random_seed : int
A seed to set the random state.
Returns
-------
float
The mean fidelity score (a value between 0 and 1) representing the average similarity between the generated SVGs and their descriptions.
A higher score indicates better fidelity.
Raises
------
ParticipantVisibleError
If the 'svg' column in the submission DataFrame is not of string type or if validation of the SVG fails.
Examples
--------
>>> import pandas as pd
>>> solution = pd.DataFrame({
... 'id': ["abcde"],
... 'question': ['["Is there a red circle?", "What shape is present?"]'],
... 'choices': ['[["yes", "no"], ["square", "circle", "triangle", "hexagon"]]'],
... 'answer': ['["yes", "circle"]'],
... })
>>> submission = pd.DataFrame({
... 'id': ["abcde"],
... 'svg': ['<svg viewBox="0 0 100 100"><circle cx="50" cy="50" r="40" fill="red"/></svg>'],
... })
>>> score(solution, submission, 'row_id', random_seed=42)
0...
"""
# Convert solution fields to list dtypes and expand
for colname in ['question', 'choices', 'answer']:
solution[colname] = solution[colname].apply(ast.literal_eval)
solution = solution.explode(['question', 'choices', 'answer'])
# Validate
if not pd.api.types.is_string_dtype(submission.loc[:, 'svg']):
raise ParticipantVisibleError('svg must be a string.')
# Check that SVG code meets defined constraints
constraints = svg_constraints.SVGConstraints()
try:
for svg in submission.loc[:, 'svg']:
constraints.validate_svg(svg)
except:
raise ParticipantVisibleError('SVG code violates constraints.')
# Score
vqa_evaluator = VQAEvaluator()
aesthetic_evaluator = AestheticEvaluator()
results = []
rng = np.random.RandomState(random_seed)
try:
df = solution.merge(submission, on='id')
for i, (_, group) in enumerate(df.loc[
:, ['id', 'question', 'choices', 'answer', 'svg']
].groupby('id')):
questions, choices, answers, svg = [
group[col_name].to_list()
for col_name in group.drop('id', axis=1).columns
]
svg = svg[0] # unpack singleton from list
group_seed = rng.randint(0, np.iinfo(np.int32).max)
image_processor = ImageProcessor(image=svg_to_png(svg), seed=group_seed).apply()
image = image_processor.image.copy()
aesthetic_score = aesthetic_evaluator.score(image)
vqa_score = vqa_evaluator.score(questions, choices, answers, image)
image_processor.reset().apply_random_crop_resize().apply_jpeg_compression(quality=90)
ocr_score = vqa_evaluator.ocr(image_processor.image)
instance_score = (
harmonic_mean(vqa_score, aesthetic_score, beta=0.5) * ocr_score
)
results.append(instance_score)
except:
raise ParticipantVisibleError('SVG failed to score.')
fidelity = statistics.mean(results)
return float(fidelity)
class VQAEvaluator:
"""Evaluates images based on their similarity to a given text description using multiple choice questions."""
def __init__(self):
self.quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16,
)
self.letters = string.ascii_uppercase
self.model_path = kagglehub.model_download(
'google/paligemma-2/transformers/paligemma2-10b-mix-448'
)
self.processor = AutoProcessor.from_pretrained(self.model_path)
self.model = PaliGemmaForConditionalGeneration.from_pretrained(
self.model_path,
low_cpu_mem_usage=True,
quantization_config=self.quantization_config,
).to('cuda')
def score(self, questions, choices, answers, image, n=4):
scores = []
batches = (chunked(qs, n) for qs in [questions, choices, answers])
for question_batch, choice_batch, answer_batch in zip(*batches, strict=True):
scores.extend(
self.score_batch(
image,
question_batch,
choice_batch,
answer_batch,
)
)
return statistics.mean(scores)
def score_batch(
self,
image: Image.Image,
questions: list[str],
choices_list: list[list[str]],
answers: list[str],
) -> list[float]:
"""Evaluates the image based on multiple choice questions and answers.
Parameters
----------
image : PIL.Image.Image
The image to evaluate.
questions : list[str]
List of questions about the image.
choices_list : list[list[str]]
List of lists of possible answer choices, corresponding to each question.
answers : list[str]
List of correct answers from the choices, corresponding to each question.
Returns
-------
list[float]
List of scores (values between 0 and 1) representing the probability of the correct answer for each question.
"""
prompts = [
self.format_prompt(question, choices)
for question, choices in zip(questions, choices_list, strict=True)
]
batched_choice_probabilities = self.get_choice_probability(
image, prompts, choices_list
)
scores = []
for i, _ in enumerate(questions):
choice_probabilities = batched_choice_probabilities[i]
answer = answers[i]
answer_probability = 0.0
for choice, prob in choice_probabilities.items():
if choice == answer:
answer_probability = prob
break
scores.append(answer_probability)
return scores
def format_prompt(self, question: str, choices: list[str]) -> str:
prompt = f'<image>answer en Question: {question}\nChoices:\n'
for i, choice in enumerate(choices):
prompt += f'{self.letters[i]}. {choice}\n'
return prompt
def mask_choices(self, logits, choices_list):
"""Masks logits for the first token of each choice letter for each question in the batch."""
batch_size = logits.shape[0]
masked_logits = torch.full_like(logits, float('-inf'))
for batch_idx in range(batch_size):
choices = choices_list[batch_idx]
for i in range(len(choices)):
letter_token = self.letters[i]
first_token = self.processor.tokenizer.encode(
letter_token, add_special_tokens=False
)[0]
first_token_with_space = self.processor.tokenizer.encode(
' ' + letter_token, add_special_tokens=False
)[0]
if isinstance(first_token, int):
masked_logits[batch_idx, first_token] = logits[
batch_idx, first_token
]
if isinstance(first_token_with_space, int):
masked_logits[batch_idx, first_token_with_space] = logits[
batch_idx, first_token_with_space
]
return masked_logits
def get_choice_probability(self, image, prompts, choices_list) -> list[dict]:
inputs = self.processor(
images=[image] * len(prompts),
text=prompts,
return_tensors='pt',
padding='longest',
).to('cuda')
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits[:, -1, :] # Logits for the last (predicted) token
masked_logits = self.mask_choices(logits, choices_list)
probabilities = torch.softmax(masked_logits, dim=-1)
batched_choice_probabilities = []
for batch_idx in range(len(prompts)):
choice_probabilities = {}
choices = choices_list[batch_idx]
for i, choice in enumerate(choices):
letter_token = self.letters[i]
first_token = self.processor.tokenizer.encode(
letter_token, add_special_tokens=False
)[0]
first_token_with_space = self.processor.tokenizer.encode(
' ' + letter_token, add_special_tokens=False
)[0]
prob = 0.0
if isinstance(first_token, int):
prob += probabilities[batch_idx, first_token].item()
if isinstance(first_token_with_space, int):
prob += probabilities[batch_idx, first_token_with_space].item()
choice_probabilities[choice] = prob
# Renormalize probabilities for each question
total_prob = sum(choice_probabilities.values())
if total_prob > 0:
renormalized_probabilities = {
choice: prob / total_prob
for choice, prob in choice_probabilities.items()
}
else:
renormalized_probabilities = (
choice_probabilities # Avoid division by zero if total_prob is 0
)
batched_choice_probabilities.append(renormalized_probabilities)
return batched_choice_probabilities
def ocr(self, image, free_chars=4):
inputs = (
self.processor(
text='<image>ocr\n',
images=image,
return_tensors='pt',
)
.to(torch.float16)
.to(self.model.device)
)
input_len = inputs['input_ids'].shape[-1]
with torch.inference_mode():
outputs = self.model.generate(**inputs, max_new_tokens=32, do_sample=False)
outputs = outputs[0][input_len:]
decoded = self.processor.decode(outputs, skip_special_tokens=True)
num_char = len(decoded)
# Exponentially decreasing towards 0.0 if more than free_chars detected
return min(1.0, math.exp(-num_char + free_chars))
class AestheticPredictor(nn.Module):
def __init__(self, input_size):
super().__init__()
self.input_size = input_size
self.layers = nn.Sequential(
nn.Linear(self.input_size, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1),
)
def forward(self, x):
return self.layers(x)
class AestheticEvaluator:
def __init__(self):
self.model_path = 'improved-aesthetic-predictor/sac+logos+ava1-l14-linearMSE.pth'
self.clip_model_path = 'ViT-L/14'
self.predictor, self.clip_model, self.preprocessor = self.load()
def load(self):
"""Loads the aesthetic predictor model and CLIP model."""
state_dict = torch.load(self.model_path, weights_only=True, map_location='cuda')
# CLIP embedding dim is 768 for CLIP ViT L 14
predictor = AestheticPredictor(768)
predictor.load_state_dict(state_dict)
predictor.to('cuda')
predictor.eval()
clip_model, preprocessor = clip.load(self.clip_model_path, device='cuda')
return predictor, clip_model, preprocessor
def score(self, image: Image.Image) -> float:
"""Predicts the CLIP aesthetic score of an image."""
image = self.preprocessor(image).unsqueeze(0).to('cuda')
with torch.no_grad():
image_features = self.clip_model.encode_image(image)
# l2 normalize
image_features /= image_features.norm(dim=-1, keepdim=True)
image_features = image_features.cpu().detach().numpy()
score = self.predictor(torch.from_numpy(image_features).to('cuda').float())
return score.item() / 10.0 # scale to [0, 1]
def harmonic_mean(a: float, b: float, beta: float = 1.0) -> float:
"""
Calculate the harmonic mean of two values, weighted using a beta parameter.
Args:
a: First value (e.g., precision)
b: Second value (e.g., recall)
beta: Weighting parameter
Returns:
Weighted harmonic mean
"""
# Handle zero values to prevent division by zero
if a <= 0 or b <= 0:
return 0.0
return (1 + beta**2) * (a * b) / (beta**2 * a + b)
def svg_to_png(svg_code: str, size: tuple = (384, 384)) -> Image.Image:
"""
Converts an SVG string to a PNG image using CairoSVG.
If the SVG does not define a `viewBox`, it will add one using the provided size.
Parameters
----------
svg_code : str
The SVG string to convert.
size : tuple[int, int], default=(384, 384)
The desired size of the output PNG image (width, height).
Returns
-------
PIL.Image.Image
The generated PNG image.
"""
# Ensure SVG has proper size attributes
if 'viewBox' not in svg_code:
svg_code = svg_code.replace('<svg', f'<svg viewBox="0 0 {size[0]} {size[1]}"')
# Convert SVG to PNG
png_data = cairosvg.svg2png(bytestring=svg_code.encode('utf-8'))
return Image.open(io.BytesIO(png_data)).convert('RGB').resize(size)
class ImageProcessor:
def __init__(self, image: Image.Image, seed=None):
"""Initialize with either a path to an image or a PIL Image object."""
self.image = image
self.original_image = self.image.copy()
if seed is not None:
self.rng = np.random.RandomState(seed)
else:
self.rng = np.random
def reset(self):
self.image = self.original_image.copy()
return self
def visualize_comparison(
self,
original_name='Original',
processed_name='Processed',
figsize=(10, 5),
show=True,
):
"""Display original and processed images side by side."""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)
ax1.imshow(np.asarray(self.original_image))
ax1.set_title(original_name)
ax1.axis('off')
ax2.imshow(np.asarray(self.image))
ax2.set_title(processed_name)
ax2.axis('off')
title = f'{original_name} vs {processed_name}'
fig.suptitle(title)
fig.tight_layout()
if show:
plt.show()
return fig
def apply_median_filter(self, size=3):
"""Apply median filter to remove outlier pixel values.
Args:
size: Size of the median filter window.
"""
self.image = self.image.filter(ImageFilter.MedianFilter(size=size))
return self
def apply_bilateral_filter(self, d=9, sigma_color=75, sigma_space=75):
"""Apply bilateral filter to smooth while preserving edges.
Args:
d: Diameter of each pixel neighborhood
sigma_color: Filter sigma in the color space
sigma_space: Filter sigma in the coordinate space
"""
# Convert PIL Image to numpy array for OpenCV
img_array = np.asarray(self.image)
# Apply bilateral filter
filtered = cv2.bilateralFilter(img_array, d, sigma_color, sigma_space)
# Convert back to PIL Image
self.image = Image.fromarray(filtered)
return self
def apply_fft_low_pass(self, cutoff_frequency=0.5):
"""Apply low-pass filter in the frequency domain using FFT.
Args:
cutoff_frequency: Normalized cutoff frequency (0-1).
Lower values remove more high frequencies.
"""
# Convert to numpy array, ensuring float32 for FFT
img_array = np.array(self.image, dtype=np.float32)
# Process each color channel separately
result = np.zeros_like(img_array)
for i in range(3): # For RGB channels
# Apply FFT
f = np.fft.fft2(img_array[:, :, i])
fshift = np.fft.fftshift(f)
# Create a low-pass filter mask
rows, cols = img_array[:, :, i].shape
crow, ccol = rows // 2, cols // 2
mask = np.zeros((rows, cols), np.float32)
r = int(min(crow, ccol) * cutoff_frequency)
center = [crow, ccol]
x, y = np.ogrid[:rows, :cols]
mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= r * r
mask[mask_area] = 1
# Apply mask and inverse FFT
fshift_filtered = fshift * mask
f_ishift = np.fft.ifftshift(fshift_filtered)
img_back = np.fft.ifft2(f_ishift)
img_back = np.real(img_back)
result[:, :, i] = img_back
# Clip to 0-255 range and convert to uint8 after processing all channels
result = np.clip(result, 0, 255).astype(np.uint8)
# Convert back to PIL Image
self.image = Image.fromarray(result)
return self
def apply_jpeg_compression(self, quality=85):
"""Apply JPEG compression.
Args:
quality: JPEG quality (0-95). Lower values increase compression.
"""
buffer = io.BytesIO()
self.image.save(buffer, format='JPEG', quality=quality)
buffer.seek(0)
self.image = Image.open(buffer)
return self
def apply_random_crop_resize(self, crop_percent=0.05):
"""Randomly crop and resize back to original dimensions.
Args:
crop_percent: Percentage of image to crop (0-0.4).
"""
width, height = self.image.size
crop_pixels_w = int(width * crop_percent)
crop_pixels_h = int(height * crop_percent)
left = self.rng.randint(0, crop_pixels_w + 1)
top = self.rng.randint(0, crop_pixels_h + 1)
right = width - self.rng.randint(0, crop_pixels_w + 1)
bottom = height - self.rng.randint(0, crop_pixels_h + 1)
self.image = self.image.crop((left, top, right, bottom))
self.image = self.image.resize((width, height), Image.BILINEAR)
return self
def apply(self):
"""Apply an ensemble of defenses."""
return (
self.apply_random_crop_resize(crop_percent=0.03)
.apply_jpeg_compression(quality=95)
.apply_median_filter(size=9)
.apply_fft_low_pass(cutoff_frequency=0.5)
.apply_bilateral_filter(d=5, sigma_color=75, sigma_space=75)
.apply_jpeg_compression(quality=92)
)