import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import json from pathlib import Path # Set style plt.style.use('ggplot') sns.set_palette("Set2") plt.rcParams['figure.figsize'] = (12, 8) # Load the data results_csv = "results/summary_20250421_230054.csv" results_json = "results/results_20250421_230054.json" df = pd.read_csv(results_csv) # Extract category from description if not already available def extract_category(row): """ Determines the category of an image based on its description or existing category. Args: row: A pandas DataFrame row containing 'category' and 'description' fields Returns: str: The determined category ('fashion', 'landscape', 'abstract', or 'unknown') """ if pd.notna(row['category']) and row['category'] != 'unknown': return row['category'] # Try to extract from description desc = row['description'].lower() if any(keyword in desc for keyword in ['coat', 'pants', 'shirt', 'dress', 'scarf', 'shoes']): return 'fashion' elif any(keyword in desc for keyword in ['forest', 'beach', 'mountain', 'ocean', 'lake', 'sky']): return 'landscape' elif any(keyword in desc for keyword in ['rectangle', 'circle', 'triangle', 'shape', 'spiral']): return 'abstract' else: return 'unknown' # Clean the data df['category'] = df.apply(extract_category, axis=1) df['generation_time'] = pd.to_numeric(df['generation_time'], errors='coerce') # 1. Model Performance Comparison def plot_model_comparison(): """ Creates boxplots comparing model performance across three metrics: VQA score, aesthetic score, and fidelity score. Saves the resulting plot to 'results/model_comparison.png'. """ fig, axes = plt.subplots(1, 3, figsize=(18, 6)) metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] for i, (metric, title) in enumerate(zip(metrics, titles)): sns.boxplot(x='model', y=metric, data=df, ax=axes[i]) axes[i].set_title(f'{title} by Model') axes[i].set_ylim([0, 1]) plt.tight_layout() plt.savefig('results/model_comparison.png') plt.close() # 2. Category Performance Analysis def plot_category_performance(): """ Creates boxplots showing performance by category and model for three metrics: VQA score, aesthetic score, and fidelity score. Saves the resulting plot to 'results/category_performance.png'. """ fig, axes = plt.subplots(1, 3, figsize=(18, 6)) metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] for i, (metric, title) in enumerate(zip(metrics, titles)): sns.boxplot(x='category', y=metric, hue='model', data=df, ax=axes[i]) axes[i].set_title(f'{title} by Category and Model') axes[i].set_ylim([0, 1]) if i > 0: axes[i].get_legend().remove() axes[0].legend(title='Model') plt.tight_layout() plt.savefig('results/category_performance.png') plt.close() # 3. Generation Time Analysis def plot_generation_time(): """ Creates visualizations of generation time analysis: 1. A boxplot showing generation time by model 2. Scatter plots showing the relationship between generation time and quality metrics Saves the resulting plots to 'results/generation_time.png' and 'results/quality_vs_time.png'. """ plt.figure(figsize=(10, 6)) sns.boxplot(x='model', y='generation_time', data=df) plt.title('Generation Time by Model') plt.ylabel('Time (seconds)') plt.tight_layout() plt.savefig('results/generation_time.png') plt.close() # Generation time vs quality scatter plot fig, axes = plt.subplots(1, 3, figsize=(18, 6)) metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] for i, (metric, title) in enumerate(zip(metrics, titles)): for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']): model_data = df[df['model'] == model] axes[i].scatter(model_data['generation_time'], model_data[metric], alpha=0.6, label=model, c=color) axes[i].set_title(f'{title} vs. Generation Time') axes[i].set_xlabel('Generation Time (seconds)') axes[i].set_ylabel(title) axes[i].legend() plt.tight_layout() plt.savefig('results/quality_vs_time.png') plt.close() # 4. Description complexity vs performance def plot_complexity_performance(): """ Analyzes the relationship between description complexity (word count) and performance metrics, creating scatter plots with trend lines. Saves the resulting plot to 'results/complexity_performance.png'. """ df['description_length'] = df['description'].str.len() df['word_count'] = df['description'].str.split().str.len() fig, axes = plt.subplots(1, 3, figsize=(18, 6)) metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] for i, (metric, title) in enumerate(zip(metrics, titles)): for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']): model_data = df[df['model'] == model] axes[i].scatter(model_data['word_count'], model_data[metric], alpha=0.6, label=model, c=color) # Add trendline z = np.polyfit(model_data['word_count'], model_data[metric], 1) p = np.poly1d(z) axes[i].plot(sorted(model_data['word_count']), p(sorted(model_data['word_count'])), c=color, linestyle='--') axes[i].set_title(f'{title} vs. Description Complexity') axes[i].set_xlabel('Word Count') axes[i].set_ylabel(title) axes[i].legend() plt.tight_layout() plt.savefig('results/complexity_performance.png') plt.close() # 5. Success and failure examples def analyze_best_worst_examples(): """ Identifies and prints the top 10 most successful and least successful generations based on fidelity score. Creates directories for sample SVG and PNG files if they don't exist. Returns: tuple: (success_df, failure_df) DataFrames containing the best and worst examples """ # Create directory for result samples Path("results/sample_svg").mkdir(exist_ok=True) Path("results/sample_png").mkdir(exist_ok=True) # Load detailed results with open(results_json, 'r') as f: results_data = json.load(f) # Create success/failure dataframes success_df = df.nlargest(10, 'fidelity_score') failure_df = df.nsmallest(10, 'fidelity_score') # Print success examples print("Top 10 Successful Generations:") print(success_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False)) # Print failure examples print("\nTop 10 Failed Generations:") print(failure_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False)) return success_df, failure_df # 6. Summary statistics def print_summary_stats(): """ Calculates and prints summary statistics for model performance: 1. Overall stats by model (mean, std, min, max for each metric) 2. Performance by category and model Also creates a radar chart visualizing fidelity scores by category and model, saved to 'results/category_radar.png'. """ # Overall stats by model model_stats = df.groupby('model').agg({ 'vqa_score': ['mean', 'std', 'min', 'max'], 'aesthetic_score': ['mean', 'std', 'min', 'max'], 'fidelity_score': ['mean', 'std', 'min', 'max'], 'generation_time': ['mean', 'std', 'min', 'max'] }) print("Overall Model Performance:") print(model_stats) # Stats by category and model category_stats = df.groupby(['model', 'category']).agg({ 'vqa_score': 'mean', 'aesthetic_score': 'mean', 'fidelity_score': 'mean', 'generation_time': 'mean' }).reset_index() print("\nPerformance by Category and Model:") print(category_stats.to_string()) # Create a radar chart for category performance categories = category_stats['category'].unique() models = category_stats['model'].unique() plt.figure(figsize=(10, 8)) angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist() angles += angles[:1] # Close the loop ax = plt.subplot(111, polar=True) for model in models: model_data = category_stats[category_stats['model'] == model] values = [] for category in categories: cat_data = model_data[model_data['category'] == category] if not cat_data.empty: values.append(cat_data['fidelity_score'].values[0]) else: values.append(0) values += values[:1] # Close the loop ax.plot(angles, values, linewidth=2, label=model) ax.fill(angles, values, alpha=0.25) ax.set_xticks(angles[:-1]) ax.set_xticklabels(categories) ax.set_title('Fidelity Score by Category and Model') ax.legend(loc='upper right') plt.tight_layout() plt.savefig('results/category_radar.png') plt.close() # Main analysis function def run_analysis(): """ Main function that runs the complete analysis pipeline: 1. Creates necessary directories 2. Generates all visualization plots 3. Prints summary statistics 4. Analyzes best and worst examples All results are saved to the 'results/' directory. """ print("Starting analysis of evaluation results...") # Create plots directory if it doesn't exist Path("results").mkdir(exist_ok=True) # Generate all plots plot_model_comparison() plot_category_performance() plot_generation_time() plot_complexity_performance() # Print summary statistics print_summary_stats() # Analyze best and worst examples success_df, failure_df = analyze_best_worst_examples() print("\nAnalysis complete. Visualizations saved to 'results/' directory.") if __name__ == "__main__": run_analysis()