LR2Bench / app.py
UltraRonin's picture
Update app.py
2db9522 verified
raw
history blame contribute delete
5.44 kB
import json
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from datasets import load_dataset
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
TASK_TEXT,
SUBMIT_TEMPLATE,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_RESULTS_PATH, GOLDEN_REPO, REPO_ID, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.evaluation import evaluate
import pdb
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
# except Exception:
# restart_space()
try:
golden = load_dataset(GOLDEN_REPO, token=TOKEN)
print(golden)
except Exception:
restart_space()
task = ['Overall', 'Crossword', 'Acrostic', 'Logic_Puzzle', 'Cryptogram', 'Sudoku', 'Drop_Quote']
leaderboard_dict = {}
for t in task:
leaderboard_dict[t] = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, task=t)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# pdb.set_trace()
def highlight_max_bold(s):
return ['font-weight: bold' if v == s.max() and v != s.min() else '' for v in s]
num_cols = dataframe.select_dtypes(include=['float']).columns
styler = dataframe.style.format({col: "{:.1f}" for col in num_cols})
styler = styler.apply(highlight_max_bold, subset=num_cols)
return gr.components.Dataframe(
value=styler,
headers=[c.name for c in fields(AutoEvalColumn)],
datatype=[c.type for c in fields(AutoEvalColumn)],
row_count=10,
interactive=False,
column_widths=[180, 60, 80, 80, 80, 80, 60],
)
def eval_json(file):
try:
with open(file.name, 'r', encoding='utf-8') as f:
data = json.load(f)
tasks = ["crossword", "acrostic", "logic", "cryptogram", "sudoku", "drop"]
eval_dict = {}
for task in tasks:
data_list = data["results"][task]
golden_list = golden[task]
result = evaluate(data_list, golden_list, task)
eval_dict[task] = result
return json.dumps(eval_dict, indent=4)
except Exception as e:
return str(e)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_id="main-tabs", elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
# leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.Tabs():
for i, t in enumerate(task):
with gr.TabItem(t.replace("_", " "), elem_id=f"llm-benchmark-tab-table-{t}", id=i):
if TASK_TEXT.get(t, None):
gr.Markdown(TASK_TEXT[t], elem_classes="markdown-text")
leaderboard = init_leaderboard(leaderboard_dict[t])
# with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text")
gr.Markdown("## Submission Template", elem_classes="markdown-text")
gr.Markdown("See [submission_template.json](https://github.com/Ultramarine-spec/LR2Bench/blob/main/submission_template.json) for detail. The following is an example for the JSON structure.", elem_classes="markdown-text")
gr.Markdown(SUBMIT_TEMPLATE, elem_classes="markdown-text", height=250)
file_input = gr.File(label="Upload JSON File", file_types=[".json"], height=150)
json_output = gr.JSON(label="Your Model Performance") # 输出 JSON 数据
submit_button = gr.Button("Submit")
submit_button.click(fn=eval_json, inputs=file_input, outputs=json_output)
with gr.Row():
# gr.Markdown()
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()