learnai2.0 / ingest.py
V15h's picture
initial commit
888d109
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, SpacyTextSplitter
DATA_PATH = 'data/geo-10'
DB_FAISS_PATH = 'refbooks-vectorstore/geo-10-1'
# Create vector database
def create_vector_db():
loader = DirectoryLoader(DATA_PATH,
glob='geo-10-1.pdf',
loader_cls=PyPDFLoader)
documents = loader.load()
text_splitter = SpacyTextSplitter(chunk_size=500,
chunk_overlap=50)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'})
db = FAISS.from_documents(texts, embeddings)
db.save_local(DB_FAISS_PATH)
if __name__ == "__main__":
create_vector_db()