Spaces:
Running
on
Zero
Running
on
Zero
from diffusers_helper.hf_login import login | |
import os | |
import threading | |
import time | |
import requests | |
from requests.adapters import HTTPAdapter | |
from urllib3.util.retry import Retry | |
import json | |
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) | |
import gradio as gr | |
import torch | |
import traceback | |
import einops | |
import safetensors.torch as sf | |
import numpy as np | |
import math | |
# Check if running in Hugging Face Space | |
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None | |
# Track GPU availability | |
GPU_AVAILABLE = False | |
GPU_INITIALIZED = False | |
last_update_time = time.time() | |
# If running in a HF Space, import spaces | |
if IN_HF_SPACE: | |
try: | |
import spaces | |
print("Running inside a Hugging Face Space, 'spaces' module imported.") | |
try: | |
GPU_AVAILABLE = torch.cuda.is_available() | |
print(f"GPU available: {GPU_AVAILABLE}") | |
if GPU_AVAILABLE: | |
print(f"GPU device name: {torch.cuda.get_device_name(0)}") | |
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB") | |
# Small GPU operation test | |
test_tensor = torch.zeros(1, device='cuda') + 1 | |
del test_tensor | |
print("GPU test operation succeeded.") | |
else: | |
print("Warning: CUDA says it's available, but no GPU device was detected.") | |
except Exception as e: | |
GPU_AVAILABLE = False | |
print(f"Error checking GPU: {e}") | |
print("Falling back to CPU mode.") | |
except ImportError: | |
print("Could not import 'spaces' module. Possibly not in a HF Space.") | |
GPU_AVAILABLE = torch.cuda.is_available() | |
from PIL import Image | |
from diffusers import AutoencoderKLHunyuanVideo | |
from transformers import ( | |
LlamaModel, | |
CLIPTextModel, | |
LlamaTokenizerFast, | |
CLIPTokenizer, | |
SiglipImageProcessor, | |
SiglipVisionModel | |
) | |
from diffusers_helper.hunyuan import ( | |
encode_prompt_conds, | |
vae_decode, | |
vae_encode, | |
vae_decode_fake | |
) | |
from diffusers_helper.utils import ( | |
save_bcthw_as_mp4, | |
crop_or_pad_yield_mask, | |
soft_append_bcthw, | |
resize_and_center_crop, | |
generate_timestamp | |
) | |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan | |
from diffusers_helper.memory import ( | |
cpu, | |
gpu, | |
get_cuda_free_memory_gb, | |
move_model_to_device_with_memory_preservation, | |
offload_model_from_device_for_memory_preservation, | |
fake_diffusers_current_device, | |
DynamicSwapInstaller, | |
unload_complete_models, | |
load_model_as_complete | |
) | |
from diffusers_helper.thread_utils import AsyncStream, async_run | |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html | |
from diffusers_helper.clip_vision import hf_clip_vision_encode | |
outputs_folder = './outputs/' | |
os.makedirs(outputs_folder, exist_ok=True) | |
# Manage GPU memory if not in HF Space | |
if not IN_HF_SPACE: | |
try: | |
if torch.cuda.is_available(): | |
free_mem_gb = get_cuda_free_memory_gb(gpu) | |
print(f'Free VRAM: {free_mem_gb} GB') | |
else: | |
free_mem_gb = 6.0 | |
print("CUDA not available, using default memory setting.") | |
except Exception as e: | |
free_mem_gb = 6.0 | |
print(f"Error getting CUDA memory: {e}, using default=6GB") | |
high_vram = free_mem_gb > 60 | |
print(f'High-VRAM mode: {high_vram}') | |
else: | |
print("Using default memory settings in a HF Space.") | |
try: | |
if GPU_AVAILABLE: | |
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9 | |
high_vram = free_mem_gb > 10 | |
else: | |
free_mem_gb = 6.0 | |
high_vram = False | |
except Exception as e: | |
print(f"Error retrieving GPU memory: {e}") | |
free_mem_gb = 6.0 | |
high_vram = False | |
print(f'GPU mem: {free_mem_gb:.2f} GB, high_vram={high_vram}') | |
models = {} | |
cpu_fallback_mode = not GPU_AVAILABLE | |
def load_models(): | |
""" | |
Load the entire pipeline models (VAE, text encoders, image encoder, transformer). | |
""" | |
global models, cpu_fallback_mode, GPU_INITIALIZED | |
if GPU_INITIALIZED: | |
print("Models are already loaded. Skipping duplicate loading.") | |
return models | |
print("Starting model load...") | |
try: | |
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu' | |
model_device = 'cpu' | |
dtype = torch.float16 if GPU_AVAILABLE else torch.float32 | |
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32 | |
print(f"Device: {device}, VAE/encoders dtype={dtype}, transformer dtype={transformer_dtype}") | |
try: | |
text_encoder = LlamaModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='text_encoder', | |
torch_dtype=dtype | |
).to(model_device) | |
text_encoder_2 = CLIPTextModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='text_encoder_2', | |
torch_dtype=dtype | |
).to(model_device) | |
tokenizer = LlamaTokenizerFast.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='tokenizer' | |
) | |
tokenizer_2 = CLIPTokenizer.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='tokenizer_2' | |
) | |
vae = AutoencoderKLHunyuanVideo.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='vae', | |
torch_dtype=dtype | |
).to(model_device) | |
feature_extractor = SiglipImageProcessor.from_pretrained( | |
"lllyasviel/flux_redux_bfl", | |
subfolder='feature_extractor' | |
) | |
image_encoder = SiglipVisionModel.from_pretrained( | |
"lllyasviel/flux_redux_bfl", | |
subfolder='image_encoder', | |
torch_dtype=dtype | |
).to(model_device) | |
# Use a custom rotating-landscape model (for example) | |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( | |
"tori29umai/FramePackI2V_HY_rotate_landscape", | |
torch_dtype=transformer_dtype | |
).to(model_device) | |
print("All models loaded successfully.") | |
except Exception as e: | |
print(f"Error loading models: {e}") | |
print("Retry with float32 on CPU.") | |
dtype = torch.float32 | |
transformer_dtype = torch.float32 | |
cpu_fallback_mode = True | |
text_encoder = LlamaModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='text_encoder', | |
torch_dtype=dtype | |
).to('cpu') | |
text_encoder_2 = CLIPTextModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='text_encoder_2', | |
torch_dtype=dtype | |
).to('cpu') | |
tokenizer = LlamaTokenizerFast.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='tokenizer' | |
) | |
tokenizer_2 = CLIPTokenizer.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='tokenizer_2' | |
) | |
vae = AutoencoderKLHunyuanVideo.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='vae', | |
torch_dtype=dtype | |
).to('cpu') | |
feature_extractor = SiglipImageProcessor.from_pretrained( | |
"lllyasviel/flux_redux_bfl", | |
subfolder='feature_extractor' | |
) | |
image_encoder = SiglipVisionModel.from_pretrained( | |
"lllyasviel/flux_redux_bfl", | |
subfolder='image_encoder', | |
torch_dtype=dtype | |
).to('cpu') | |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( | |
"tori29umai/FramePackI2V_HY_rotate_landscape", | |
torch_dtype=transformer_dtype | |
).to('cpu') | |
print("Models loaded in CPU-only fallback mode.") | |
vae.eval() | |
text_encoder.eval() | |
text_encoder_2.eval() | |
image_encoder.eval() | |
transformer.eval() | |
if not high_vram or cpu_fallback_mode: | |
vae.enable_slicing() | |
vae.enable_tiling() | |
transformer.high_quality_fp32_output_for_inference = True | |
print("transformer.high_quality_fp32_output_for_inference = True") | |
if not cpu_fallback_mode: | |
transformer.to(dtype=transformer_dtype) | |
vae.to(dtype=dtype) | |
image_encoder.to(dtype=dtype) | |
text_encoder.to(dtype=dtype) | |
text_encoder_2.to(dtype=dtype) | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
text_encoder_2.requires_grad_(False) | |
image_encoder.requires_grad_(False) | |
transformer.requires_grad_(False) | |
if torch.cuda.is_available() and not cpu_fallback_mode: | |
try: | |
if not high_vram: | |
DynamicSwapInstaller.install_model(transformer, device=device) | |
DynamicSwapInstaller.install_model(text_encoder, device=device) | |
else: | |
text_encoder.to(device) | |
text_encoder_2.to(device) | |
image_encoder.to(device) | |
vae.to(device) | |
transformer.to(device) | |
print(f"Successfully moved models to {device}") | |
except Exception as e: | |
print(f"Error moving models to {device}: {e}") | |
print("Falling back to CPU.") | |
cpu_fallback_mode = True | |
models_local = { | |
'text_encoder': text_encoder, | |
'text_encoder_2': text_encoder_2, | |
'tokenizer': tokenizer, | |
'tokenizer_2': tokenizer_2, | |
'vae': vae, | |
'feature_extractor': feature_extractor, | |
'image_encoder': image_encoder, | |
'transformer': transformer | |
} | |
GPU_INITIALIZED = True | |
models.update(models_local) | |
print(f"Model load complete. Mode: {'CPU' if cpu_fallback_mode else 'GPU'}") | |
return models | |
except Exception as e: | |
print(f"Unexpected error in load_models(): {e}") | |
traceback.print_exc() | |
cpu_fallback_mode = True | |
return {} | |
# Use GPU decorator if in HF Space | |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE: | |
try: | |
def initialize_models(): | |
global GPU_INITIALIZED | |
try: | |
result = load_models() | |
GPU_INITIALIZED = True | |
return result | |
except Exception as e: | |
print(f"Error in @spaces.GPU model init: {e}") | |
global cpu_fallback_mode | |
cpu_fallback_mode = True | |
return load_models() | |
except Exception as e: | |
print(f"Error creating spaces.GPU decorator: {e}") | |
def initialize_models(): | |
return load_models() | |
else: | |
def initialize_models(): | |
return load_models() | |
def get_models(): | |
""" | |
Retrieve the global models or load them if not yet loaded. | |
""" | |
global models | |
model_loading_key = "__model_loading__" | |
if not models: | |
if model_loading_key in globals(): | |
print("Models are loading. Please wait.") | |
import time | |
start_time = time.time() | |
while (not models) and (model_loading_key in globals()): | |
time.sleep(0.5) | |
if time.time() - start_time > 60: | |
print("Timed out waiting for model load.") | |
break | |
if models: | |
return models | |
try: | |
globals()[model_loading_key] = True | |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode: | |
try: | |
print("Loading models via @spaces.GPU") | |
models_local = initialize_models() | |
models.update(models_local) | |
except Exception as e: | |
print(f"GPU decorator load error: {e}, fallback to direct load.") | |
models_local = load_models() | |
models.update(models_local) | |
else: | |
models_local = load_models() | |
models.update(models_local) | |
except Exception as e: | |
print(f"Unexpected error while loading models: {e}") | |
models.clear() | |
finally: | |
if model_loading_key in globals(): | |
del globals()[model_loading_key] | |
return models | |
# Predefined resolutions for a rotating-landscape scenario | |
PREDEFINED_RESOLUTIONS = [ | |
(416, 960), (448, 864), (480, 832), (512, 768), (544, 704), | |
(576, 672), (608, 640), (640, 608), (672, 576), (704, 544), | |
(768, 512), (832, 480), (864, 448), (960, 416) | |
] | |
def find_closest_aspect_ratio(width, height, target_resolutions): | |
""" | |
Find the resolution in 'target_resolutions' whose aspect ratio | |
is closest to the original image aspect ratio (width/height). | |
""" | |
original_aspect = width / height | |
min_diff = float('inf') | |
closest_resolution = None | |
for tw, th in target_resolutions: | |
target_aspect = tw / th | |
diff = abs(original_aspect - target_aspect) | |
if diff < min_diff: | |
min_diff = diff | |
closest_resolution = (tw, th) | |
return closest_resolution | |
stream = AsyncStream() | |
def worker( | |
input_image, | |
prompt, | |
n_prompt, | |
seed, | |
total_second_length, | |
latent_window_size, | |
steps, | |
cfg, | |
gs, | |
rs, | |
gpu_memory_preservation, | |
use_teacache | |
): | |
""" | |
Background worker that performs the actual generation. | |
""" | |
global last_update_time | |
last_update_time = time.time() | |
# For demonstration, limit max length to 3 seconds | |
total_second_length = min(total_second_length, 3.0) | |
try: | |
models_local = get_models() | |
if not models_local: | |
err_msg = "Failed to load models. Check logs for details." | |
print(err_msg) | |
stream.output_queue.push(('error', err_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
text_encoder = models_local['text_encoder'] | |
text_encoder_2 = models_local['text_encoder_2'] | |
tokenizer = models_local['tokenizer'] | |
tokenizer_2 = models_local['tokenizer_2'] | |
vae = models_local['vae'] | |
feature_extractor = models_local['feature_extractor'] | |
image_encoder = models_local['image_encoder'] | |
transformer = models_local['transformer'] | |
except Exception as e: | |
err = f"Error retrieving models: {e}" | |
print(err) | |
traceback.print_exc() | |
stream.output_queue.push(('error', err)) | |
stream.output_queue.push(('end', None)) | |
return | |
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu' | |
print(f"Inference device: {device}") | |
# Adjust parameters if in CPU fallback | |
if cpu_fallback_mode: | |
print("CPU fallback mode: using smaller parameters for performance.") | |
latent_window_size = min(latent_window_size, 5) | |
steps = min(steps, 15) | |
total_second_length = min(total_second_length, 2.0) | |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) | |
total_latent_sections = int(max(round(total_latent_sections), 1)) | |
job_id = generate_timestamp() | |
last_output_filename = None | |
history_pixels = None | |
history_latents = None | |
total_generated_latent_frames = 0 | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
unload_complete_models( | |
text_encoder, text_encoder_2, image_encoder, vae, transformer | |
) | |
except Exception as e: | |
print(f"Error unloading models: {e}") | |
# Text encode | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Encoding text ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
fake_diffusers_current_device(text_encoder, device) | |
load_model_as_complete(text_encoder_2, target_device=device) | |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
if cfg == 1: | |
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) | |
else: | |
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) | |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) | |
except Exception as e: | |
err = f"Text encoding error: {e}" | |
print(err) | |
traceback.print_exc() | |
stream.output_queue.push(('error', err)) | |
stream.output_queue.push(('end', None)) | |
return | |
# Process input image | |
try: | |
H, W, C = input_image.shape | |
target_w, target_h = find_closest_aspect_ratio(W, H, PREDEFINED_RESOLUTIONS) | |
# If CPU fallback, scale down | |
if cpu_fallback_mode: | |
scale_factor = min(320 / target_h, 320 / target_w) | |
target_h = int(target_h * scale_factor) | |
target_w = int(target_w * scale_factor) | |
print(f"Original image: {W}x{H}, resizing to: {target_w}x{target_h}") | |
input_image_np = resize_and_center_crop(input_image, target_width=target_w, target_height=target_h) | |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) | |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 | |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] | |
except Exception as e: | |
err = f"Image processing error: {e}" | |
print(err) | |
traceback.print_exc() | |
stream.output_queue.push(('error', err)) | |
stream.output_queue.push(('end', None)) | |
return | |
# VAE encode | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
load_model_as_complete(vae, target_device=device) | |
start_latent = vae_encode(input_image_pt, vae) | |
except Exception as e: | |
err = f"VAE encode error: {e}" | |
print(err) | |
traceback.print_exc() | |
stream.output_queue.push(('error', err)) | |
stream.output_queue.push(('end', None)) | |
return | |
# CLIP Vision | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
load_model_as_complete(image_encoder, target_device=device) | |
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) | |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state | |
except Exception as e: | |
err = f"CLIP Vision encode error: {e}" | |
print(err) | |
traceback.print_exc() | |
stream.output_queue.push(('error', err)) | |
stream.output_queue.push(('end', None)) | |
return | |
# Convert dtype | |
try: | |
llama_vec = llama_vec.to(transformer.dtype) | |
llama_vec_n = llama_vec_n.to(transformer.dtype) | |
clip_l_pooler = clip_l_pooler.to(transformer.dtype) | |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) | |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) | |
except Exception as e: | |
err = f"Data type conversion error: {e}" | |
print(err) | |
traceback.print_exc() | |
stream.output_queue.push(('error', err)) | |
stream.output_queue.push(('end', None)) | |
return | |
# Sampling | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting sampling...')))) | |
rnd = torch.Generator("cpu").manual_seed(seed) | |
num_frames = latent_window_size * 4 - 3 | |
try: | |
history_latents = torch.zeros( | |
size=(1, 16, 1 + 2 + 16, target_h // 8, target_w // 8), | |
dtype=torch.float32 | |
).cpu() | |
history_pixels = None | |
total_generated_latent_frames = 0 | |
except Exception as e: | |
err = f"Error initializing history latents: {e}" | |
print(err) | |
traceback.print_exc() | |
stream.output_queue.push(('error', err)) | |
stream.output_queue.push(('end', None)) | |
return | |
latent_paddings = list(reversed(range(total_latent_sections))) | |
if total_latent_sections > 4: | |
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0] | |
for latent_padding in latent_paddings: | |
last_update_time = time.time() | |
is_last_section = (latent_padding == 0) | |
latent_padding_size = latent_padding * latent_window_size | |
if stream.input_queue.top() == 'end': | |
if history_pixels is not None and total_generated_latent_frames > 0: | |
try: | |
final_name = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4') | |
save_bcthw_as_mp4(history_pixels, final_name, fps=30, crf=18) | |
stream.output_queue.push(('file', final_name)) | |
except Exception as e: | |
print(f"Error saving final partial video: {e}") | |
stream.output_queue.push(('end', None)) | |
return | |
print(f'latent_padding_size = {latent_padding_size}, is_last_section={is_last_section}') | |
try: | |
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0) | |
( | |
cidx_pre, | |
blank_indices, | |
latent_indices, | |
cidx_post, | |
cidx_2x, | |
cidx_4x | |
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1) | |
clean_latent_indices = torch.cat([cidx_pre, cidx_post], dim=1) | |
clean_latents_pre = start_latent.to(history_latents) | |
c_latents_post, c_latents_2x, c_latents_4x = history_latents[:, :, :1 + 2 + 16].split([1, 2, 16], dim=2) | |
clean_latents = torch.cat([clean_latents_pre, c_latents_post], dim=2) | |
except Exception as e: | |
err = f"Error preparing sampling data: {e}" | |
print(err) | |
traceback.print_exc() | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
continue | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
unload_complete_models() | |
move_model_to_device_with_memory_preservation( | |
transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation | |
) | |
except Exception as e: | |
print(f"Error moving transformer to GPU: {e}") | |
if use_teacache and not cpu_fallback_mode: | |
try: | |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps) | |
except Exception as e: | |
print(f"Error initializing TeaCache: {e}") | |
transformer.initialize_teacache(enable_teacache=False) | |
else: | |
transformer.initialize_teacache(enable_teacache=False) | |
def callback(d): | |
global last_update_time | |
last_update_time = time.time() | |
try: | |
if stream.input_queue.top() == 'end': | |
stream.output_queue.push(('end', None)) | |
raise KeyboardInterrupt('User requested stop.') | |
preview_latents = d['denoised'] | |
preview_latents = vae_decode_fake(preview_latents) | |
preview_img = (preview_latents * 255.0).cpu().numpy().clip(0,255).astype(np.uint8) | |
preview_img = einops.rearrange(preview_img, 'b c t h w -> (b h) (t w) c') | |
curr_step = d['i'] + 1 | |
percentage = int(100.0 * curr_step / steps) | |
hint = f'Sampling {curr_step}/{steps}' | |
desc = f'Generated frames so far: {int(max(0, total_generated_latent_frames * 4 - 3))}' | |
bar_html = make_progress_bar_html(percentage, hint) | |
stream.output_queue.push(('progress', (preview_img, desc, bar_html))) | |
except KeyboardInterrupt: | |
raise | |
except Exception as exc: | |
print(f"Error in sampling callback: {exc}") | |
return | |
try: | |
print(f"Sampling: device={device}, dtype={transformer.dtype}, teacache={use_teacache}") | |
try: | |
generated_latents = sample_hunyuan( | |
transformer=transformer, | |
sampler='unipc', | |
width=target_w, | |
height=target_h, | |
frames=num_frames, | |
real_guidance_scale=cfg, | |
distilled_guidance_scale=gs, | |
guidance_rescale=rs, | |
num_inference_steps=steps, | |
generator=rnd, | |
prompt_embeds=llama_vec, | |
prompt_embeds_mask=llama_attention_mask, | |
prompt_poolers=clip_l_pooler, | |
negative_prompt_embeds=llama_vec_n, | |
negative_prompt_embeds_mask=llama_attention_mask_n, | |
negative_prompt_poolers=clip_l_pooler_n, | |
device=device, | |
dtype=transformer.dtype, | |
image_embeddings=image_encoder_last_hidden_state, | |
latent_indices=latent_indices, | |
clean_latents=clean_latents, | |
clean_latent_indices=clean_latent_indices, | |
clean_latents_2x=c_latents_2x, | |
clean_latent_2x_indices=cidx_2x, | |
clean_latents_4x=c_latents_4x, | |
clean_latent_4x_indices=cidx_4x, | |
callback=callback | |
) | |
except KeyboardInterrupt as e: | |
print(f"User interrupt: {e}") | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
err_msg = "User stopped generation; partial video returned." | |
else: | |
err_msg = "User stopped generation; no video produced." | |
stream.output_queue.push(('error', err_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
except Exception as e: | |
print(f"Error during sampling: {e}") | |
traceback.print_exc() | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
err_msg = f"Sampling error; partial video returned: {e}" | |
stream.output_queue.push(('error', err_msg)) | |
else: | |
err_msg = f"Sampling error; no video produced: {e}" | |
stream.output_queue.push(('error', err_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
try: | |
if is_last_section: | |
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2) | |
total_generated_latent_frames += int(generated_latents.shape[2]) | |
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) | |
except Exception as e: | |
err = f"Error merging latent outputs: {e}" | |
print(err) | |
traceback.print_exc() | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
stream.output_queue.push(('error', err)) | |
stream.output_queue.push(('end', None)) | |
return | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
offload_model_from_device_for_memory_preservation( | |
transformer, target_device=device, preserved_memory_gb=8 | |
) | |
load_model_as_complete(vae, target_device=device) | |
except Exception as e: | |
print(f"Error managing model memory: {e}") | |
try: | |
real_history_latents = history_latents[:, :, :total_generated_latent_frames] | |
except Exception as e: | |
err = f"Error slicing latents history: {e}" | |
print(err) | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
continue | |
try: | |
if history_pixels is None: | |
history_pixels = vae_decode(real_history_latents, vae).cpu() | |
else: | |
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2) | |
overlapped_frames = latent_window_size * 4 - 3 | |
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu() | |
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames) | |
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') | |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=18) | |
last_output_filename = output_filename | |
stream.output_queue.push(('file', output_filename)) | |
except Exception as e: | |
print(f"Error decoding/saving video: {e}") | |
traceback.print_exc() | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
err = f"Error decoding/saving video: {e}" | |
stream.output_queue.push(('error', err)) | |
continue | |
if is_last_section: | |
break | |
except Exception as e: | |
print(f"Outer error: {e}, type={type(e)}") | |
traceback.print_exc() | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
unload_complete_models( | |
text_encoder, text_encoder_2, image_encoder, vae, transformer | |
) | |
except Exception as ue: | |
print(f"Unload error: {ue}") | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
err = f"Error in worker: {e}" | |
stream.output_queue.push(('error', err)) | |
print("Worker finished, pushing end.") | |
stream.output_queue.push(('end', None)) | |
# Create a processing function with or without the HF Spaces GPU decorator | |
if IN_HF_SPACE and 'spaces' in globals(): | |
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, use_teacache): | |
global stream | |
assert input_image is not None, "No input image provided." | |
# Fix certain parameters for simplicity | |
latent_window_size = 9 | |
steps = 25 | |
cfg = 1.0 | |
gs = 10.0 | |
rs = 0.0 | |
gpu_memory_preservation = 6 | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
try: | |
stream = AsyncStream() | |
async_run( | |
worker, | |
input_image, prompt, n_prompt, seed, | |
total_second_length, latent_window_size, steps, | |
cfg, gs, rs, gpu_memory_preservation, use_teacache | |
) | |
output_filename = None | |
prev_output_filename = None | |
error_message = None | |
while True: | |
try: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
prev_output_filename = output_filename | |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True) | |
elif flag == 'progress': | |
preview, desc, html = data | |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
elif flag == 'error': | |
error_message = data | |
print(f"Received error: {error_message}") | |
elif flag == 'end': | |
if output_filename is None and prev_output_filename is not None: | |
output_filename = prev_output_filename | |
if error_message: | |
yield output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"Error processing output: {e}") | |
if (time.time() - last_update_time) > 60: | |
print(f"No updates for {(time.time()-last_update_time):.1f}s, likely hung.") | |
if prev_output_filename: | |
yield prev_output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"Error starting process: {e}") | |
traceback.print_exc() | |
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) | |
process = process_with_gpu | |
else: | |
def process(input_image, prompt, n_prompt, seed, total_second_length, use_teacache): | |
global stream | |
assert input_image is not None, "No input image provided." | |
latent_window_size = 9 | |
steps = 25 | |
cfg = 1.0 | |
gs = 10.0 | |
rs = 0.0 | |
gpu_memory_preservation = 6 | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
try: | |
stream = AsyncStream() | |
async_run( | |
worker, | |
input_image, prompt, n_prompt, seed, | |
total_second_length, latent_window_size, steps, | |
cfg, gs, rs, gpu_memory_preservation, use_teacache | |
) | |
output_filename = None | |
prev_output_filename = None | |
error_message = None | |
while True: | |
try: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
prev_output_filename = output_filename | |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True) | |
elif flag == 'progress': | |
preview, desc, html = data | |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
elif flag == 'error': | |
error_message = data | |
print(f"Received error: {error_message}") | |
elif flag == 'end': | |
if output_filename is None and prev_output_filename is not None: | |
output_filename = prev_output_filename | |
if error_message: | |
yield output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"Error processing output: {e}") | |
if (time.time() - last_update_time) > 60: | |
print(f"No updates for {(time.time()-last_update_time):.1f}s, likely hung.") | |
if prev_output_filename: | |
yield prev_output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"Error starting process: {e}") | |
traceback.print_exc() | |
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) | |
def end_process(): | |
""" | |
Stop generation by pushing 'end' signal into the queue. | |
""" | |
print("User clicked the stop button, sending 'end' signal...") | |
global stream | |
if 'stream' in globals() and stream is not None: | |
try: | |
current_top = stream.input_queue.top() | |
print(f"Queue top signal: {current_top}") | |
except Exception as e: | |
print(f"Error checking queue status: {e}") | |
try: | |
stream.input_queue.push('end') | |
print("Successfully pushed 'end' signal.") | |
except Exception as e: | |
print(f"Error pushing 'end' signal: {e}") | |
else: | |
print("Warning: 'stream' is not initialized; cannot stop.") | |
return None | |
quick_prompts = [ | |
["The camera smoothly orbits around the center of the scene, keeping the center point fixed and always in view"] | |
] | |
def make_custom_css(): | |
base_progress_css = make_progress_bar_css() | |
enhanced_css = """ | |
body { | |
background: #f9fafb !important; | |
font-family: "Noto Sans", sans-serif; | |
} | |
#app-container { | |
max-width: 1200px; | |
margin: 0 auto; | |
padding: 1rem; | |
position: relative; | |
} | |
h1 { | |
font-size: 2rem; | |
text-align: center; | |
margin-bottom: 1rem; | |
color: #2d3748; | |
font-weight: 700; | |
} | |
.start-btn, .stop-btn { | |
min-height: 45px; | |
font-size: 1rem; | |
font-weight: 600; | |
} | |
.start-btn { | |
background-color: #3182ce !important; | |
color: #fff !important; | |
} | |
.stop-btn { | |
background-color: #e53e3e !important; | |
color: #fff !important; | |
} | |
.button-container button:hover { | |
filter: brightness(0.95); | |
} | |
.preview-container, .video-container { | |
border: 1px solid #cbd5e0; | |
border-radius: 8px; | |
overflow: hidden; | |
} | |
.progress-container { | |
margin-top: 15px; | |
margin-bottom: 15px; | |
} | |
.error-message { | |
background-color: #fff5f5; | |
border: 1px solid #fed7d7; | |
color: #e53e3e; | |
padding: 10px; | |
border-radius: 4px; | |
margin-top: 10px; | |
} | |
.error-icon { | |
color: #e53e3e; | |
margin-right: 8px; | |
} | |
#error-message { | |
color: #ff4444; | |
font-weight: bold; | |
padding: 10px; | |
border-radius: 4px; | |
margin-top: 10px; | |
} | |
@media (max-width: 768px) { | |
#app-container { | |
padding: 0.5rem; | |
} | |
.mobile-full-width { | |
flex-direction: column !important; | |
} | |
.mobile-full-width > .gr-block { | |
width: 100% !important; | |
} | |
} | |
""" | |
return base_progress_css + enhanced_css | |
css = make_custom_css() | |
block = gr.Blocks(css=css).queue() | |
with block: | |
gr.HTML("<h1>FramePack Rotate-Landscape - Generate Rotating Landscape Video</h1>") | |
with gr.Row(elem_classes="mobile-full-width"): | |
with gr.Column(scale=1): | |
input_image = gr.Image( | |
sources='upload', | |
type="numpy", | |
label="Upload Image", | |
height=320 | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
value='The camera smoothly orbits around the center of the scene...', | |
) | |
example_quick_prompts = gr.Dataset( | |
samples=quick_prompts, | |
label="Quick Prompts", | |
samples_per_page=1000, | |
components=[prompt] | |
) | |
example_quick_prompts.click( | |
lambda x: x[0], | |
inputs=[example_quick_prompts], | |
outputs=prompt, | |
show_progress=False, | |
queue=False | |
) | |
with gr.Row(elem_classes="button-container"): | |
start_button = gr.Button( | |
value="Generate", | |
elem_classes="start-btn", | |
variant="primary" | |
) | |
end_button = gr.Button( | |
value="Stop", | |
elem_classes="stop-btn", | |
interactive=False | |
) | |
use_teacache = gr.Checkbox( | |
label="Use TeaCache", | |
value=True, | |
info="Faster speed, but possibly worse finger/hand generation." | |
) | |
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) | |
seed = gr.Number(label="Seed", value=31337, precision=0) | |
total_second_length = gr.Slider( | |
label="Video length (max 3 seconds)", | |
minimum=0.5, maximum=3, value=1.0, step=0.1 | |
) | |
with gr.Column(scale=1): | |
preview_image = gr.Image( | |
label="Preview", | |
height=200, | |
visible=False, | |
elem_classes="preview-container" | |
) | |
result_video = gr.Video( | |
label="Generated Video", | |
autoplay=True, | |
loop=True, | |
show_share_button=True, | |
height=512, | |
elem_classes="video-container" | |
) | |
gr.HTML(""" | |
<div> | |
Note: Due to reversed sampling, ending actions may appear before starting actions. If the start action is missing, please wait for further frames. | |
</div> | |
""") | |
with gr.Group(elem_classes="progress-container"): | |
progress_desc = gr.Markdown('') | |
progress_bar = gr.HTML('') | |
error_message = gr.HTML('', elem_id='error-message', visible=True) | |
# Inputs | |
ips = [input_image, prompt, n_prompt, seed, total_second_length, use_teacache] | |
start_button.click( | |
fn=process, | |
inputs=ips, | |
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button] | |
) | |
end_button.click(fn=end_process) | |
block.launch() | |