openfree's picture
Update app.py
6dfa0f3 verified
raw
history blame contribute delete
45 kB
from diffusers_helper.hf_login import login
import os
import threading
import time
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import json
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
# Check if running in Hugging Face Space
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
# Track GPU availability
GPU_AVAILABLE = False
GPU_INITIALIZED = False
last_update_time = time.time()
# If running in a HF Space, import spaces
if IN_HF_SPACE:
try:
import spaces
print("Running inside a Hugging Face Space, 'spaces' module imported.")
try:
GPU_AVAILABLE = torch.cuda.is_available()
print(f"GPU available: {GPU_AVAILABLE}")
if GPU_AVAILABLE:
print(f"GPU device name: {torch.cuda.get_device_name(0)}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
# Small GPU operation test
test_tensor = torch.zeros(1, device='cuda') + 1
del test_tensor
print("GPU test operation succeeded.")
else:
print("Warning: CUDA says it's available, but no GPU device was detected.")
except Exception as e:
GPU_AVAILABLE = False
print(f"Error checking GPU: {e}")
print("Falling back to CPU mode.")
except ImportError:
print("Could not import 'spaces' module. Possibly not in a HF Space.")
GPU_AVAILABLE = torch.cuda.is_available()
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel,
CLIPTextModel,
LlamaTokenizerFast,
CLIPTokenizer,
SiglipImageProcessor,
SiglipVisionModel
)
from diffusers_helper.hunyuan import (
encode_prompt_conds,
vae_decode,
vae_encode,
vae_decode_fake
)
from diffusers_helper.utils import (
save_bcthw_as_mp4,
crop_or_pad_yield_mask,
soft_append_bcthw,
resize_and_center_crop,
generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
cpu,
gpu,
get_cuda_free_memory_gb,
move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation,
fake_diffusers_current_device,
DynamicSwapInstaller,
unload_complete_models,
load_model_as_complete
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from diffusers_helper.clip_vision import hf_clip_vision_encode
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
# Manage GPU memory if not in HF Space
if not IN_HF_SPACE:
try:
if torch.cuda.is_available():
free_mem_gb = get_cuda_free_memory_gb(gpu)
print(f'Free VRAM: {free_mem_gb} GB')
else:
free_mem_gb = 6.0
print("CUDA not available, using default memory setting.")
except Exception as e:
free_mem_gb = 6.0
print(f"Error getting CUDA memory: {e}, using default=6GB")
high_vram = free_mem_gb > 60
print(f'High-VRAM mode: {high_vram}')
else:
print("Using default memory settings in a HF Space.")
try:
if GPU_AVAILABLE:
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
high_vram = free_mem_gb > 10
else:
free_mem_gb = 6.0
high_vram = False
except Exception as e:
print(f"Error retrieving GPU memory: {e}")
free_mem_gb = 6.0
high_vram = False
print(f'GPU mem: {free_mem_gb:.2f} GB, high_vram={high_vram}')
models = {}
cpu_fallback_mode = not GPU_AVAILABLE
def load_models():
"""
Load the entire pipeline models (VAE, text encoders, image encoder, transformer).
"""
global models, cpu_fallback_mode, GPU_INITIALIZED
if GPU_INITIALIZED:
print("Models are already loaded. Skipping duplicate loading.")
return models
print("Starting model load...")
try:
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu'
model_device = 'cpu'
dtype = torch.float16 if GPU_AVAILABLE else torch.float32
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
print(f"Device: {device}, VAE/encoders dtype={dtype}, transformer dtype={transformer_dtype}")
try:
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder',
torch_dtype=dtype
).to(model_device)
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2',
torch_dtype=dtype
).to(model_device)
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer'
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2'
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae',
torch_dtype=dtype
).to(model_device)
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='feature_extractor'
)
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder',
torch_dtype=dtype
).to(model_device)
# Use a custom rotating-landscape model (for example)
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"tori29umai/FramePackI2V_HY_rotate_landscape",
torch_dtype=transformer_dtype
).to(model_device)
print("All models loaded successfully.")
except Exception as e:
print(f"Error loading models: {e}")
print("Retry with float32 on CPU.")
dtype = torch.float32
transformer_dtype = torch.float32
cpu_fallback_mode = True
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder',
torch_dtype=dtype
).to('cpu')
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2',
torch_dtype=dtype
).to('cpu')
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer'
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2'
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae',
torch_dtype=dtype
).to('cpu')
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='feature_extractor'
)
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder',
torch_dtype=dtype
).to('cpu')
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"tori29umai/FramePackI2V_HY_rotate_landscape",
torch_dtype=transformer_dtype
).to('cpu')
print("Models loaded in CPU-only fallback mode.")
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram or cpu_fallback_mode:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print("transformer.high_quality_fp32_output_for_inference = True")
if not cpu_fallback_mode:
transformer.to(dtype=transformer_dtype)
vae.to(dtype=dtype)
image_encoder.to(dtype=dtype)
text_encoder.to(dtype=dtype)
text_encoder_2.to(dtype=dtype)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if torch.cuda.is_available() and not cpu_fallback_mode:
try:
if not high_vram:
DynamicSwapInstaller.install_model(transformer, device=device)
DynamicSwapInstaller.install_model(text_encoder, device=device)
else:
text_encoder.to(device)
text_encoder_2.to(device)
image_encoder.to(device)
vae.to(device)
transformer.to(device)
print(f"Successfully moved models to {device}")
except Exception as e:
print(f"Error moving models to {device}: {e}")
print("Falling back to CPU.")
cpu_fallback_mode = True
models_local = {
'text_encoder': text_encoder,
'text_encoder_2': text_encoder_2,
'tokenizer': tokenizer,
'tokenizer_2': tokenizer_2,
'vae': vae,
'feature_extractor': feature_extractor,
'image_encoder': image_encoder,
'transformer': transformer
}
GPU_INITIALIZED = True
models.update(models_local)
print(f"Model load complete. Mode: {'CPU' if cpu_fallback_mode else 'GPU'}")
return models
except Exception as e:
print(f"Unexpected error in load_models(): {e}")
traceback.print_exc()
cpu_fallback_mode = True
return {}
# Use GPU decorator if in HF Space
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
try:
@spaces.GPU
def initialize_models():
global GPU_INITIALIZED
try:
result = load_models()
GPU_INITIALIZED = True
return result
except Exception as e:
print(f"Error in @spaces.GPU model init: {e}")
global cpu_fallback_mode
cpu_fallback_mode = True
return load_models()
except Exception as e:
print(f"Error creating spaces.GPU decorator: {e}")
def initialize_models():
return load_models()
else:
def initialize_models():
return load_models()
def get_models():
"""
Retrieve the global models or load them if not yet loaded.
"""
global models
model_loading_key = "__model_loading__"
if not models:
if model_loading_key in globals():
print("Models are loading. Please wait.")
import time
start_time = time.time()
while (not models) and (model_loading_key in globals()):
time.sleep(0.5)
if time.time() - start_time > 60:
print("Timed out waiting for model load.")
break
if models:
return models
try:
globals()[model_loading_key] = True
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
try:
print("Loading models via @spaces.GPU")
models_local = initialize_models()
models.update(models_local)
except Exception as e:
print(f"GPU decorator load error: {e}, fallback to direct load.")
models_local = load_models()
models.update(models_local)
else:
models_local = load_models()
models.update(models_local)
except Exception as e:
print(f"Unexpected error while loading models: {e}")
models.clear()
finally:
if model_loading_key in globals():
del globals()[model_loading_key]
return models
# Predefined resolutions for a rotating-landscape scenario
PREDEFINED_RESOLUTIONS = [
(416, 960), (448, 864), (480, 832), (512, 768), (544, 704),
(576, 672), (608, 640), (640, 608), (672, 576), (704, 544),
(768, 512), (832, 480), (864, 448), (960, 416)
]
def find_closest_aspect_ratio(width, height, target_resolutions):
"""
Find the resolution in 'target_resolutions' whose aspect ratio
is closest to the original image aspect ratio (width/height).
"""
original_aspect = width / height
min_diff = float('inf')
closest_resolution = None
for tw, th in target_resolutions:
target_aspect = tw / th
diff = abs(original_aspect - target_aspect)
if diff < min_diff:
min_diff = diff
closest_resolution = (tw, th)
return closest_resolution
stream = AsyncStream()
@torch.no_grad()
def worker(
input_image,
prompt,
n_prompt,
seed,
total_second_length,
latent_window_size,
steps,
cfg,
gs,
rs,
gpu_memory_preservation,
use_teacache
):
"""
Background worker that performs the actual generation.
"""
global last_update_time
last_update_time = time.time()
# For demonstration, limit max length to 3 seconds
total_second_length = min(total_second_length, 3.0)
try:
models_local = get_models()
if not models_local:
err_msg = "Failed to load models. Check logs for details."
print(err_msg)
stream.output_queue.push(('error', err_msg))
stream.output_queue.push(('end', None))
return
text_encoder = models_local['text_encoder']
text_encoder_2 = models_local['text_encoder_2']
tokenizer = models_local['tokenizer']
tokenizer_2 = models_local['tokenizer_2']
vae = models_local['vae']
feature_extractor = models_local['feature_extractor']
image_encoder = models_local['image_encoder']
transformer = models_local['transformer']
except Exception as e:
err = f"Error retrieving models: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu'
print(f"Inference device: {device}")
# Adjust parameters if in CPU fallback
if cpu_fallback_mode:
print("CPU fallback mode: using smaller parameters for performance.")
latent_window_size = min(latent_window_size, 5)
steps = min(steps, 15)
total_second_length = min(total_second_length, 2.0)
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
last_output_filename = None
history_pixels = None
history_latents = None
total_generated_latent_frames = 0
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
except Exception as e:
print(f"Error unloading models: {e}")
# Text encode
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Encoding text ...'))))
try:
if not high_vram and not cpu_fallback_mode:
fake_diffusers_current_device(text_encoder, device)
load_model_as_complete(text_encoder_2, target_device=device)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
except Exception as e:
err = f"Text encoding error: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
# Process input image
try:
H, W, C = input_image.shape
target_w, target_h = find_closest_aspect_ratio(W, H, PREDEFINED_RESOLUTIONS)
# If CPU fallback, scale down
if cpu_fallback_mode:
scale_factor = min(320 / target_h, 320 / target_w)
target_h = int(target_h * scale_factor)
target_w = int(target_w * scale_factor)
print(f"Original image: {W}x{H}, resizing to: {target_w}x{target_h}")
input_image_np = resize_and_center_crop(input_image, target_width=target_w, target_height=target_h)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
except Exception as e:
err = f"Image processing error: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
# VAE encode
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
load_model_as_complete(vae, target_device=device)
start_latent = vae_encode(input_image_pt, vae)
except Exception as e:
err = f"VAE encode error: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
# CLIP Vision
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
load_model_as_complete(image_encoder, target_device=device)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
except Exception as e:
err = f"CLIP Vision encode error: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
# Convert dtype
try:
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
except Exception as e:
err = f"Data type conversion error: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
# Sampling
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting sampling...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
num_frames = latent_window_size * 4 - 3
try:
history_latents = torch.zeros(
size=(1, 16, 1 + 2 + 16, target_h // 8, target_w // 8),
dtype=torch.float32
).cpu()
history_pixels = None
total_generated_latent_frames = 0
except Exception as e:
err = f"Error initializing history latents: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
latent_paddings = list(reversed(range(total_latent_sections)))
if total_latent_sections > 4:
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]
for latent_padding in latent_paddings:
last_update_time = time.time()
is_last_section = (latent_padding == 0)
latent_padding_size = latent_padding * latent_window_size
if stream.input_queue.top() == 'end':
if history_pixels is not None and total_generated_latent_frames > 0:
try:
final_name = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, final_name, fps=30, crf=18)
stream.output_queue.push(('file', final_name))
except Exception as e:
print(f"Error saving final partial video: {e}")
stream.output_queue.push(('end', None))
return
print(f'latent_padding_size = {latent_padding_size}, is_last_section={is_last_section}')
try:
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
(
cidx_pre,
blank_indices,
latent_indices,
cidx_post,
cidx_2x,
cidx_4x
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([cidx_pre, cidx_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
c_latents_post, c_latents_2x, c_latents_4x = history_latents[:, :, :1 + 2 + 16].split([1, 2, 16], dim=2)
clean_latents = torch.cat([clean_latents_pre, c_latents_post], dim=2)
except Exception as e:
err = f"Error preparing sampling data: {e}"
print(err)
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
continue
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models()
move_model_to_device_with_memory_preservation(
transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation
)
except Exception as e:
print(f"Error moving transformer to GPU: {e}")
if use_teacache and not cpu_fallback_mode:
try:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
except Exception as e:
print(f"Error initializing TeaCache: {e}")
transformer.initialize_teacache(enable_teacache=False)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
global last_update_time
last_update_time = time.time()
try:
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User requested stop.')
preview_latents = d['denoised']
preview_latents = vae_decode_fake(preview_latents)
preview_img = (preview_latents * 255.0).cpu().numpy().clip(0,255).astype(np.uint8)
preview_img = einops.rearrange(preview_img, 'b c t h w -> (b h) (t w) c')
curr_step = d['i'] + 1
percentage = int(100.0 * curr_step / steps)
hint = f'Sampling {curr_step}/{steps}'
desc = f'Generated frames so far: {int(max(0, total_generated_latent_frames * 4 - 3))}'
bar_html = make_progress_bar_html(percentage, hint)
stream.output_queue.push(('progress', (preview_img, desc, bar_html)))
except KeyboardInterrupt:
raise
except Exception as exc:
print(f"Error in sampling callback: {exc}")
return
try:
print(f"Sampling: device={device}, dtype={transformer.dtype}, teacache={use_teacache}")
try:
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=target_w,
height=target_h,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=transformer.dtype,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=c_latents_2x,
clean_latent_2x_indices=cidx_2x,
clean_latents_4x=c_latents_4x,
clean_latent_4x_indices=cidx_4x,
callback=callback
)
except KeyboardInterrupt as e:
print(f"User interrupt: {e}")
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
err_msg = "User stopped generation; partial video returned."
else:
err_msg = "User stopped generation; no video produced."
stream.output_queue.push(('error', err_msg))
stream.output_queue.push(('end', None))
return
except Exception as e:
print(f"Error during sampling: {e}")
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
err_msg = f"Sampling error; partial video returned: {e}"
stream.output_queue.push(('error', err_msg))
else:
err_msg = f"Sampling error; no video produced: {e}"
stream.output_queue.push(('error', err_msg))
stream.output_queue.push(('end', None))
return
try:
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
except Exception as e:
err = f"Error merging latent outputs: {e}"
print(err)
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
if not high_vram and not cpu_fallback_mode:
try:
offload_model_from_device_for_memory_preservation(
transformer, target_device=device, preserved_memory_gb=8
)
load_model_as_complete(vae, target_device=device)
except Exception as e:
print(f"Error managing model memory: {e}")
try:
real_history_latents = history_latents[:, :, :total_generated_latent_frames]
except Exception as e:
err = f"Error slicing latents history: {e}"
print(err)
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
continue
try:
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=18)
last_output_filename = output_filename
stream.output_queue.push(('file', output_filename))
except Exception as e:
print(f"Error decoding/saving video: {e}")
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
err = f"Error decoding/saving video: {e}"
stream.output_queue.push(('error', err))
continue
if is_last_section:
break
except Exception as e:
print(f"Outer error: {e}, type={type(e)}")
traceback.print_exc()
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
except Exception as ue:
print(f"Unload error: {ue}")
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
err = f"Error in worker: {e}"
stream.output_queue.push(('error', err))
print("Worker finished, pushing end.")
stream.output_queue.push(('end', None))
# Create a processing function with or without the HF Spaces GPU decorator
if IN_HF_SPACE and 'spaces' in globals():
@spaces.GPU
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, use_teacache):
global stream
assert input_image is not None, "No input image provided."
# Fix certain parameters for simplicity
latent_window_size = 9
steps = 25
cfg = 1.0
gs = 10.0
rs = 0.0
gpu_memory_preservation = 6
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
async_run(
worker,
input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache
)
output_filename = None
prev_output_filename = None
error_message = None
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
elif flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
elif flag == 'error':
error_message = data
print(f"Received error: {error_message}")
elif flag == 'end':
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
if error_message:
yield output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
else:
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"Error processing output: {e}")
if (time.time() - last_update_time) > 60:
print(f"No updates for {(time.time()-last_update_time):.1f}s, likely hung.")
if prev_output_filename:
yield prev_output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
else:
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"Error starting process: {e}")
traceback.print_exc()
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
process = process_with_gpu
else:
def process(input_image, prompt, n_prompt, seed, total_second_length, use_teacache):
global stream
assert input_image is not None, "No input image provided."
latent_window_size = 9
steps = 25
cfg = 1.0
gs = 10.0
rs = 0.0
gpu_memory_preservation = 6
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
async_run(
worker,
input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache
)
output_filename = None
prev_output_filename = None
error_message = None
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
elif flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
elif flag == 'error':
error_message = data
print(f"Received error: {error_message}")
elif flag == 'end':
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
if error_message:
yield output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
else:
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"Error processing output: {e}")
if (time.time() - last_update_time) > 60:
print(f"No updates for {(time.time()-last_update_time):.1f}s, likely hung.")
if prev_output_filename:
yield prev_output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
else:
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"Error starting process: {e}")
traceback.print_exc()
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
def end_process():
"""
Stop generation by pushing 'end' signal into the queue.
"""
print("User clicked the stop button, sending 'end' signal...")
global stream
if 'stream' in globals() and stream is not None:
try:
current_top = stream.input_queue.top()
print(f"Queue top signal: {current_top}")
except Exception as e:
print(f"Error checking queue status: {e}")
try:
stream.input_queue.push('end')
print("Successfully pushed 'end' signal.")
except Exception as e:
print(f"Error pushing 'end' signal: {e}")
else:
print("Warning: 'stream' is not initialized; cannot stop.")
return None
quick_prompts = [
["The camera smoothly orbits around the center of the scene, keeping the center point fixed and always in view"]
]
def make_custom_css():
base_progress_css = make_progress_bar_css()
enhanced_css = """
body {
background: #f9fafb !important;
font-family: "Noto Sans", sans-serif;
}
#app-container {
max-width: 1200px;
margin: 0 auto;
padding: 1rem;
position: relative;
}
h1 {
font-size: 2rem;
text-align: center;
margin-bottom: 1rem;
color: #2d3748;
font-weight: 700;
}
.start-btn, .stop-btn {
min-height: 45px;
font-size: 1rem;
font-weight: 600;
}
.start-btn {
background-color: #3182ce !important;
color: #fff !important;
}
.stop-btn {
background-color: #e53e3e !important;
color: #fff !important;
}
.button-container button:hover {
filter: brightness(0.95);
}
.preview-container, .video-container {
border: 1px solid #cbd5e0;
border-radius: 8px;
overflow: hidden;
}
.progress-container {
margin-top: 15px;
margin-bottom: 15px;
}
.error-message {
background-color: #fff5f5;
border: 1px solid #fed7d7;
color: #e53e3e;
padding: 10px;
border-radius: 4px;
margin-top: 10px;
}
.error-icon {
color: #e53e3e;
margin-right: 8px;
}
#error-message {
color: #ff4444;
font-weight: bold;
padding: 10px;
border-radius: 4px;
margin-top: 10px;
}
@media (max-width: 768px) {
#app-container {
padding: 0.5rem;
}
.mobile-full-width {
flex-direction: column !important;
}
.mobile-full-width > .gr-block {
width: 100% !important;
}
}
"""
return base_progress_css + enhanced_css
css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
gr.HTML("<h1>FramePack Rotate-Landscape - Generate Rotating Landscape Video</h1>")
with gr.Row(elem_classes="mobile-full-width"):
with gr.Column(scale=1):
input_image = gr.Image(
sources='upload',
type="numpy",
label="Upload Image",
height=320
)
prompt = gr.Textbox(
label="Prompt",
value='The camera smoothly orbits around the center of the scene...',
)
example_quick_prompts = gr.Dataset(
samples=quick_prompts,
label="Quick Prompts",
samples_per_page=1000,
components=[prompt]
)
example_quick_prompts.click(
lambda x: x[0],
inputs=[example_quick_prompts],
outputs=prompt,
show_progress=False,
queue=False
)
with gr.Row(elem_classes="button-container"):
start_button = gr.Button(
value="Generate",
elem_classes="start-btn",
variant="primary"
)
end_button = gr.Button(
value="Stop",
elem_classes="stop-btn",
interactive=False
)
use_teacache = gr.Checkbox(
label="Use TeaCache",
value=True,
info="Faster speed, but possibly worse finger/hand generation."
)
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
seed = gr.Number(label="Seed", value=31337, precision=0)
total_second_length = gr.Slider(
label="Video length (max 3 seconds)",
minimum=0.5, maximum=3, value=1.0, step=0.1
)
with gr.Column(scale=1):
preview_image = gr.Image(
label="Preview",
height=200,
visible=False,
elem_classes="preview-container"
)
result_video = gr.Video(
label="Generated Video",
autoplay=True,
loop=True,
show_share_button=True,
height=512,
elem_classes="video-container"
)
gr.HTML("""
<div>
Note: Due to reversed sampling, ending actions may appear before starting actions. If the start action is missing, please wait for further frames.
</div>
""")
with gr.Group(elem_classes="progress-container"):
progress_desc = gr.Markdown('')
progress_bar = gr.HTML('')
error_message = gr.HTML('', elem_id='error-message', visible=True)
# Inputs
ips = [input_image, prompt, n_prompt, seed, total_second_length, use_teacache]
start_button.click(
fn=process,
inputs=ips,
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
)
end_button.click(fn=end_process)
block.launch()