from diffusers_helper.hf_login import login import os import threading import time import requests from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry import json os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) import gradio as gr import torch import traceback import einops import safetensors.torch as sf import numpy as np import math # Check if running in Hugging Face Space IN_HF_SPACE = os.environ.get('SPACE_ID') is not None # Track GPU availability GPU_AVAILABLE = False GPU_INITIALIZED = False last_update_time = time.time() # If running in a HF Space, import spaces if IN_HF_SPACE: try: import spaces print("Running inside a Hugging Face Space, 'spaces' module imported.") try: GPU_AVAILABLE = torch.cuda.is_available() print(f"GPU available: {GPU_AVAILABLE}") if GPU_AVAILABLE: print(f"GPU device name: {torch.cuda.get_device_name(0)}") print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB") # Small GPU operation test test_tensor = torch.zeros(1, device='cuda') + 1 del test_tensor print("GPU test operation succeeded.") else: print("Warning: CUDA says it's available, but no GPU device was detected.") except Exception as e: GPU_AVAILABLE = False print(f"Error checking GPU: {e}") print("Falling back to CPU mode.") except ImportError: print("Could not import 'spaces' module. Possibly not in a HF Space.") GPU_AVAILABLE = torch.cuda.is_available() from PIL import Image from diffusers import AutoencoderKLHunyuanVideo from transformers import ( LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer, SiglipImageProcessor, SiglipVisionModel ) from diffusers_helper.hunyuan import ( encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake ) from diffusers_helper.utils import ( save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, generate_timestamp ) from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan from diffusers_helper.memory import ( cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete ) from diffusers_helper.thread_utils import AsyncStream, async_run from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html from diffusers_helper.clip_vision import hf_clip_vision_encode outputs_folder = './outputs/' os.makedirs(outputs_folder, exist_ok=True) # Manage GPU memory if not in HF Space if not IN_HF_SPACE: try: if torch.cuda.is_available(): free_mem_gb = get_cuda_free_memory_gb(gpu) print(f'Free VRAM: {free_mem_gb} GB') else: free_mem_gb = 6.0 print("CUDA not available, using default memory setting.") except Exception as e: free_mem_gb = 6.0 print(f"Error getting CUDA memory: {e}, using default=6GB") high_vram = free_mem_gb > 60 print(f'High-VRAM mode: {high_vram}') else: print("Using default memory settings in a HF Space.") try: if GPU_AVAILABLE: free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9 high_vram = free_mem_gb > 10 else: free_mem_gb = 6.0 high_vram = False except Exception as e: print(f"Error retrieving GPU memory: {e}") free_mem_gb = 6.0 high_vram = False print(f'GPU mem: {free_mem_gb:.2f} GB, high_vram={high_vram}') models = {} cpu_fallback_mode = not GPU_AVAILABLE def load_models(): """ Load the entire pipeline models (VAE, text encoders, image encoder, transformer). """ global models, cpu_fallback_mode, GPU_INITIALIZED if GPU_INITIALIZED: print("Models are already loaded. Skipping duplicate loading.") return models print("Starting model load...") try: device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu' model_device = 'cpu' dtype = torch.float16 if GPU_AVAILABLE else torch.float32 transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32 print(f"Device: {device}, VAE/encoders dtype={dtype}, transformer dtype={transformer_dtype}") try: text_encoder = LlamaModel.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype ).to(model_device) text_encoder_2 = CLIPTextModel.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype ).to(model_device) tokenizer = LlamaTokenizerFast.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer' ) tokenizer_2 = CLIPTokenizer.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2' ) vae = AutoencoderKLHunyuanVideo.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype ).to(model_device) feature_extractor = SiglipImageProcessor.from_pretrained( "lllyasviel/flux_redux_bfl", subfolder='feature_extractor' ) image_encoder = SiglipVisionModel.from_pretrained( "lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype ).to(model_device) # Use a custom rotating-landscape model (for example) transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( "tori29umai/FramePackI2V_HY_rotate_landscape", torch_dtype=transformer_dtype ).to(model_device) print("All models loaded successfully.") except Exception as e: print(f"Error loading models: {e}") print("Retry with float32 on CPU.") dtype = torch.float32 transformer_dtype = torch.float32 cpu_fallback_mode = True text_encoder = LlamaModel.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype ).to('cpu') text_encoder_2 = CLIPTextModel.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype ).to('cpu') tokenizer = LlamaTokenizerFast.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer' ) tokenizer_2 = CLIPTokenizer.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2' ) vae = AutoencoderKLHunyuanVideo.from_pretrained( "hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype ).to('cpu') feature_extractor = SiglipImageProcessor.from_pretrained( "lllyasviel/flux_redux_bfl", subfolder='feature_extractor' ) image_encoder = SiglipVisionModel.from_pretrained( "lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype ).to('cpu') transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( "tori29umai/FramePackI2V_HY_rotate_landscape", torch_dtype=transformer_dtype ).to('cpu') print("Models loaded in CPU-only fallback mode.") vae.eval() text_encoder.eval() text_encoder_2.eval() image_encoder.eval() transformer.eval() if not high_vram or cpu_fallback_mode: vae.enable_slicing() vae.enable_tiling() transformer.high_quality_fp32_output_for_inference = True print("transformer.high_quality_fp32_output_for_inference = True") if not cpu_fallback_mode: transformer.to(dtype=transformer_dtype) vae.to(dtype=dtype) image_encoder.to(dtype=dtype) text_encoder.to(dtype=dtype) text_encoder_2.to(dtype=dtype) vae.requires_grad_(False) text_encoder.requires_grad_(False) text_encoder_2.requires_grad_(False) image_encoder.requires_grad_(False) transformer.requires_grad_(False) if torch.cuda.is_available() and not cpu_fallback_mode: try: if not high_vram: DynamicSwapInstaller.install_model(transformer, device=device) DynamicSwapInstaller.install_model(text_encoder, device=device) else: text_encoder.to(device) text_encoder_2.to(device) image_encoder.to(device) vae.to(device) transformer.to(device) print(f"Successfully moved models to {device}") except Exception as e: print(f"Error moving models to {device}: {e}") print("Falling back to CPU.") cpu_fallback_mode = True models_local = { 'text_encoder': text_encoder, 'text_encoder_2': text_encoder_2, 'tokenizer': tokenizer, 'tokenizer_2': tokenizer_2, 'vae': vae, 'feature_extractor': feature_extractor, 'image_encoder': image_encoder, 'transformer': transformer } GPU_INITIALIZED = True models.update(models_local) print(f"Model load complete. Mode: {'CPU' if cpu_fallback_mode else 'GPU'}") return models except Exception as e: print(f"Unexpected error in load_models(): {e}") traceback.print_exc() cpu_fallback_mode = True return {} # Use GPU decorator if in HF Space if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE: try: @spaces.GPU def initialize_models(): global GPU_INITIALIZED try: result = load_models() GPU_INITIALIZED = True return result except Exception as e: print(f"Error in @spaces.GPU model init: {e}") global cpu_fallback_mode cpu_fallback_mode = True return load_models() except Exception as e: print(f"Error creating spaces.GPU decorator: {e}") def initialize_models(): return load_models() else: def initialize_models(): return load_models() def get_models(): """ Retrieve the global models or load them if not yet loaded. """ global models model_loading_key = "__model_loading__" if not models: if model_loading_key in globals(): print("Models are loading. Please wait.") import time start_time = time.time() while (not models) and (model_loading_key in globals()): time.sleep(0.5) if time.time() - start_time > 60: print("Timed out waiting for model load.") break if models: return models try: globals()[model_loading_key] = True if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode: try: print("Loading models via @spaces.GPU") models_local = initialize_models() models.update(models_local) except Exception as e: print(f"GPU decorator load error: {e}, fallback to direct load.") models_local = load_models() models.update(models_local) else: models_local = load_models() models.update(models_local) except Exception as e: print(f"Unexpected error while loading models: {e}") models.clear() finally: if model_loading_key in globals(): del globals()[model_loading_key] return models # Predefined resolutions for a rotating-landscape scenario PREDEFINED_RESOLUTIONS = [ (416, 960), (448, 864), (480, 832), (512, 768), (544, 704), (576, 672), (608, 640), (640, 608), (672, 576), (704, 544), (768, 512), (832, 480), (864, 448), (960, 416) ] def find_closest_aspect_ratio(width, height, target_resolutions): """ Find the resolution in 'target_resolutions' whose aspect ratio is closest to the original image aspect ratio (width/height). """ original_aspect = width / height min_diff = float('inf') closest_resolution = None for tw, th in target_resolutions: target_aspect = tw / th diff = abs(original_aspect - target_aspect) if diff < min_diff: min_diff = diff closest_resolution = (tw, th) return closest_resolution stream = AsyncStream() @torch.no_grad() def worker( input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache ): """ Background worker that performs the actual generation. """ global last_update_time last_update_time = time.time() # For demonstration, limit max length to 3 seconds total_second_length = min(total_second_length, 3.0) try: models_local = get_models() if not models_local: err_msg = "Failed to load models. Check logs for details." print(err_msg) stream.output_queue.push(('error', err_msg)) stream.output_queue.push(('end', None)) return text_encoder = models_local['text_encoder'] text_encoder_2 = models_local['text_encoder_2'] tokenizer = models_local['tokenizer'] tokenizer_2 = models_local['tokenizer_2'] vae = models_local['vae'] feature_extractor = models_local['feature_extractor'] image_encoder = models_local['image_encoder'] transformer = models_local['transformer'] except Exception as e: err = f"Error retrieving models: {e}" print(err) traceback.print_exc() stream.output_queue.push(('error', err)) stream.output_queue.push(('end', None)) return device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu' print(f"Inference device: {device}") # Adjust parameters if in CPU fallback if cpu_fallback_mode: print("CPU fallback mode: using smaller parameters for performance.") latent_window_size = min(latent_window_size, 5) steps = min(steps, 15) total_second_length = min(total_second_length, 2.0) total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) total_latent_sections = int(max(round(total_latent_sections), 1)) job_id = generate_timestamp() last_output_filename = None history_pixels = None history_latents = None total_generated_latent_frames = 0 stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) try: if not high_vram and not cpu_fallback_mode: try: unload_complete_models( text_encoder, text_encoder_2, image_encoder, vae, transformer ) except Exception as e: print(f"Error unloading models: {e}") # Text encode last_update_time = time.time() stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Encoding text ...')))) try: if not high_vram and not cpu_fallback_mode: fake_diffusers_current_device(text_encoder, device) load_model_as_complete(text_encoder_2, target_device=device) llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) if cfg == 1: llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) else: llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) except Exception as e: err = f"Text encoding error: {e}" print(err) traceback.print_exc() stream.output_queue.push(('error', err)) stream.output_queue.push(('end', None)) return # Process input image try: H, W, C = input_image.shape target_w, target_h = find_closest_aspect_ratio(W, H, PREDEFINED_RESOLUTIONS) # If CPU fallback, scale down if cpu_fallback_mode: scale_factor = min(320 / target_h, 320 / target_w) target_h = int(target_h * scale_factor) target_w = int(target_w * scale_factor) print(f"Original image: {W}x{H}, resizing to: {target_w}x{target_h}") input_image_np = resize_and_center_crop(input_image, target_width=target_w, target_height=target_h) Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] except Exception as e: err = f"Image processing error: {e}" print(err) traceback.print_exc() stream.output_queue.push(('error', err)) stream.output_queue.push(('end', None)) return # VAE encode last_update_time = time.time() stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) try: if not high_vram and not cpu_fallback_mode: load_model_as_complete(vae, target_device=device) start_latent = vae_encode(input_image_pt, vae) except Exception as e: err = f"VAE encode error: {e}" print(err) traceback.print_exc() stream.output_queue.push(('error', err)) stream.output_queue.push(('end', None)) return # CLIP Vision last_update_time = time.time() stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) try: if not high_vram and not cpu_fallback_mode: load_model_as_complete(image_encoder, target_device=device) image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) image_encoder_last_hidden_state = image_encoder_output.last_hidden_state except Exception as e: err = f"CLIP Vision encode error: {e}" print(err) traceback.print_exc() stream.output_queue.push(('error', err)) stream.output_queue.push(('end', None)) return # Convert dtype try: llama_vec = llama_vec.to(transformer.dtype) llama_vec_n = llama_vec_n.to(transformer.dtype) clip_l_pooler = clip_l_pooler.to(transformer.dtype) clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) except Exception as e: err = f"Data type conversion error: {e}" print(err) traceback.print_exc() stream.output_queue.push(('error', err)) stream.output_queue.push(('end', None)) return # Sampling last_update_time = time.time() stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting sampling...')))) rnd = torch.Generator("cpu").manual_seed(seed) num_frames = latent_window_size * 4 - 3 try: history_latents = torch.zeros( size=(1, 16, 1 + 2 + 16, target_h // 8, target_w // 8), dtype=torch.float32 ).cpu() history_pixels = None total_generated_latent_frames = 0 except Exception as e: err = f"Error initializing history latents: {e}" print(err) traceback.print_exc() stream.output_queue.push(('error', err)) stream.output_queue.push(('end', None)) return latent_paddings = list(reversed(range(total_latent_sections))) if total_latent_sections > 4: latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0] for latent_padding in latent_paddings: last_update_time = time.time() is_last_section = (latent_padding == 0) latent_padding_size = latent_padding * latent_window_size if stream.input_queue.top() == 'end': if history_pixels is not None and total_generated_latent_frames > 0: try: final_name = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4') save_bcthw_as_mp4(history_pixels, final_name, fps=30, crf=18) stream.output_queue.push(('file', final_name)) except Exception as e: print(f"Error saving final partial video: {e}") stream.output_queue.push(('end', None)) return print(f'latent_padding_size = {latent_padding_size}, is_last_section={is_last_section}') try: indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0) ( cidx_pre, blank_indices, latent_indices, cidx_post, cidx_2x, cidx_4x ) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1) clean_latent_indices = torch.cat([cidx_pre, cidx_post], dim=1) clean_latents_pre = start_latent.to(history_latents) c_latents_post, c_latents_2x, c_latents_4x = history_latents[:, :, :1 + 2 + 16].split([1, 2, 16], dim=2) clean_latents = torch.cat([clean_latents_pre, c_latents_post], dim=2) except Exception as e: err = f"Error preparing sampling data: {e}" print(err) traceback.print_exc() if last_output_filename: stream.output_queue.push(('file', last_output_filename)) continue if not high_vram and not cpu_fallback_mode: try: unload_complete_models() move_model_to_device_with_memory_preservation( transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation ) except Exception as e: print(f"Error moving transformer to GPU: {e}") if use_teacache and not cpu_fallback_mode: try: transformer.initialize_teacache(enable_teacache=True, num_steps=steps) except Exception as e: print(f"Error initializing TeaCache: {e}") transformer.initialize_teacache(enable_teacache=False) else: transformer.initialize_teacache(enable_teacache=False) def callback(d): global last_update_time last_update_time = time.time() try: if stream.input_queue.top() == 'end': stream.output_queue.push(('end', None)) raise KeyboardInterrupt('User requested stop.') preview_latents = d['denoised'] preview_latents = vae_decode_fake(preview_latents) preview_img = (preview_latents * 255.0).cpu().numpy().clip(0,255).astype(np.uint8) preview_img = einops.rearrange(preview_img, 'b c t h w -> (b h) (t w) c') curr_step = d['i'] + 1 percentage = int(100.0 * curr_step / steps) hint = f'Sampling {curr_step}/{steps}' desc = f'Generated frames so far: {int(max(0, total_generated_latent_frames * 4 - 3))}' bar_html = make_progress_bar_html(percentage, hint) stream.output_queue.push(('progress', (preview_img, desc, bar_html))) except KeyboardInterrupt: raise except Exception as exc: print(f"Error in sampling callback: {exc}") return try: print(f"Sampling: device={device}, dtype={transformer.dtype}, teacache={use_teacache}") try: generated_latents = sample_hunyuan( transformer=transformer, sampler='unipc', width=target_w, height=target_h, frames=num_frames, real_guidance_scale=cfg, distilled_guidance_scale=gs, guidance_rescale=rs, num_inference_steps=steps, generator=rnd, prompt_embeds=llama_vec, prompt_embeds_mask=llama_attention_mask, prompt_poolers=clip_l_pooler, negative_prompt_embeds=llama_vec_n, negative_prompt_embeds_mask=llama_attention_mask_n, negative_prompt_poolers=clip_l_pooler_n, device=device, dtype=transformer.dtype, image_embeddings=image_encoder_last_hidden_state, latent_indices=latent_indices, clean_latents=clean_latents, clean_latent_indices=clean_latent_indices, clean_latents_2x=c_latents_2x, clean_latent_2x_indices=cidx_2x, clean_latents_4x=c_latents_4x, clean_latent_4x_indices=cidx_4x, callback=callback ) except KeyboardInterrupt as e: print(f"User interrupt: {e}") if last_output_filename: stream.output_queue.push(('file', last_output_filename)) err_msg = "User stopped generation; partial video returned." else: err_msg = "User stopped generation; no video produced." stream.output_queue.push(('error', err_msg)) stream.output_queue.push(('end', None)) return except Exception as e: print(f"Error during sampling: {e}") traceback.print_exc() if last_output_filename: stream.output_queue.push(('file', last_output_filename)) err_msg = f"Sampling error; partial video returned: {e}" stream.output_queue.push(('error', err_msg)) else: err_msg = f"Sampling error; no video produced: {e}" stream.output_queue.push(('error', err_msg)) stream.output_queue.push(('end', None)) return try: if is_last_section: generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2) total_generated_latent_frames += int(generated_latents.shape[2]) history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) except Exception as e: err = f"Error merging latent outputs: {e}" print(err) traceback.print_exc() if last_output_filename: stream.output_queue.push(('file', last_output_filename)) stream.output_queue.push(('error', err)) stream.output_queue.push(('end', None)) return if not high_vram and not cpu_fallback_mode: try: offload_model_from_device_for_memory_preservation( transformer, target_device=device, preserved_memory_gb=8 ) load_model_as_complete(vae, target_device=device) except Exception as e: print(f"Error managing model memory: {e}") try: real_history_latents = history_latents[:, :, :total_generated_latent_frames] except Exception as e: err = f"Error slicing latents history: {e}" print(err) if last_output_filename: stream.output_queue.push(('file', last_output_filename)) continue try: if history_pixels is None: history_pixels = vae_decode(real_history_latents, vae).cpu() else: section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2) overlapped_frames = latent_window_size * 4 - 3 current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu() history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames) output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=18) last_output_filename = output_filename stream.output_queue.push(('file', output_filename)) except Exception as e: print(f"Error decoding/saving video: {e}") traceback.print_exc() if last_output_filename: stream.output_queue.push(('file', last_output_filename)) err = f"Error decoding/saving video: {e}" stream.output_queue.push(('error', err)) continue if is_last_section: break except Exception as e: print(f"Outer error: {e}, type={type(e)}") traceback.print_exc() if not high_vram and not cpu_fallback_mode: try: unload_complete_models( text_encoder, text_encoder_2, image_encoder, vae, transformer ) except Exception as ue: print(f"Unload error: {ue}") if last_output_filename: stream.output_queue.push(('file', last_output_filename)) err = f"Error in worker: {e}" stream.output_queue.push(('error', err)) print("Worker finished, pushing end.") stream.output_queue.push(('end', None)) # Create a processing function with or without the HF Spaces GPU decorator if IN_HF_SPACE and 'spaces' in globals(): @spaces.GPU def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, use_teacache): global stream assert input_image is not None, "No input image provided." # Fix certain parameters for simplicity latent_window_size = 9 steps = 25 cfg = 1.0 gs = 10.0 rs = 0.0 gpu_memory_preservation = 6 yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) try: stream = AsyncStream() async_run( worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache ) output_filename = None prev_output_filename = None error_message = None while True: try: flag, data = stream.output_queue.next() if flag == 'file': output_filename = data prev_output_filename = output_filename yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True) elif flag == 'progress': preview, desc, html = data yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) elif flag == 'error': error_message = data print(f"Received error: {error_message}") elif flag == 'end': if output_filename is None and prev_output_filename is not None: output_filename = prev_output_filename if error_message: yield output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) else: yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) break except Exception as e: print(f"Error processing output: {e}") if (time.time() - last_update_time) > 60: print(f"No updates for {(time.time()-last_update_time):.1f}s, likely hung.") if prev_output_filename: yield prev_output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) else: yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) break except Exception as e: print(f"Error starting process: {e}") traceback.print_exc() yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) process = process_with_gpu else: def process(input_image, prompt, n_prompt, seed, total_second_length, use_teacache): global stream assert input_image is not None, "No input image provided." latent_window_size = 9 steps = 25 cfg = 1.0 gs = 10.0 rs = 0.0 gpu_memory_preservation = 6 yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) try: stream = AsyncStream() async_run( worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache ) output_filename = None prev_output_filename = None error_message = None while True: try: flag, data = stream.output_queue.next() if flag == 'file': output_filename = data prev_output_filename = output_filename yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True) elif flag == 'progress': preview, desc, html = data yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) elif flag == 'error': error_message = data print(f"Received error: {error_message}") elif flag == 'end': if output_filename is None and prev_output_filename is not None: output_filename = prev_output_filename if error_message: yield output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) else: yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) break except Exception as e: print(f"Error processing output: {e}") if (time.time() - last_update_time) > 60: print(f"No updates for {(time.time()-last_update_time):.1f}s, likely hung.") if prev_output_filename: yield prev_output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) else: yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) break except Exception as e: print(f"Error starting process: {e}") traceback.print_exc() yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) def end_process(): """ Stop generation by pushing 'end' signal into the queue. """ print("User clicked the stop button, sending 'end' signal...") global stream if 'stream' in globals() and stream is not None: try: current_top = stream.input_queue.top() print(f"Queue top signal: {current_top}") except Exception as e: print(f"Error checking queue status: {e}") try: stream.input_queue.push('end') print("Successfully pushed 'end' signal.") except Exception as e: print(f"Error pushing 'end' signal: {e}") else: print("Warning: 'stream' is not initialized; cannot stop.") return None quick_prompts = [ ["The camera smoothly orbits around the center of the scene, keeping the center point fixed and always in view"] ] def make_custom_css(): base_progress_css = make_progress_bar_css() enhanced_css = """ body { background: #f9fafb !important; font-family: "Noto Sans", sans-serif; } #app-container { max-width: 1200px; margin: 0 auto; padding: 1rem; position: relative; } h1 { font-size: 2rem; text-align: center; margin-bottom: 1rem; color: #2d3748; font-weight: 700; } .start-btn, .stop-btn { min-height: 45px; font-size: 1rem; font-weight: 600; } .start-btn { background-color: #3182ce !important; color: #fff !important; } .stop-btn { background-color: #e53e3e !important; color: #fff !important; } .button-container button:hover { filter: brightness(0.95); } .preview-container, .video-container { border: 1px solid #cbd5e0; border-radius: 8px; overflow: hidden; } .progress-container { margin-top: 15px; margin-bottom: 15px; } .error-message { background-color: #fff5f5; border: 1px solid #fed7d7; color: #e53e3e; padding: 10px; border-radius: 4px; margin-top: 10px; } .error-icon { color: #e53e3e; margin-right: 8px; } #error-message { color: #ff4444; font-weight: bold; padding: 10px; border-radius: 4px; margin-top: 10px; } @media (max-width: 768px) { #app-container { padding: 0.5rem; } .mobile-full-width { flex-direction: column !important; } .mobile-full-width > .gr-block { width: 100% !important; } } """ return base_progress_css + enhanced_css css = make_custom_css() block = gr.Blocks(css=css).queue() with block: gr.HTML("

FramePack Rotate-Landscape - Generate Rotating Landscape Video

") with gr.Row(elem_classes="mobile-full-width"): with gr.Column(scale=1): input_image = gr.Image( sources='upload', type="numpy", label="Upload Image", height=320 ) prompt = gr.Textbox( label="Prompt", value='The camera smoothly orbits around the center of the scene...', ) example_quick_prompts = gr.Dataset( samples=quick_prompts, label="Quick Prompts", samples_per_page=1000, components=[prompt] ) example_quick_prompts.click( lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False ) with gr.Row(elem_classes="button-container"): start_button = gr.Button( value="Generate", elem_classes="start-btn", variant="primary" ) end_button = gr.Button( value="Stop", elem_classes="stop-btn", interactive=False ) use_teacache = gr.Checkbox( label="Use TeaCache", value=True, info="Faster speed, but possibly worse finger/hand generation." ) n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) seed = gr.Number(label="Seed", value=31337, precision=0) total_second_length = gr.Slider( label="Video length (max 3 seconds)", minimum=0.5, maximum=3, value=1.0, step=0.1 ) with gr.Column(scale=1): preview_image = gr.Image( label="Preview", height=200, visible=False, elem_classes="preview-container" ) result_video = gr.Video( label="Generated Video", autoplay=True, loop=True, show_share_button=True, height=512, elem_classes="video-container" ) gr.HTML("""
Note: Due to reversed sampling, ending actions may appear before starting actions. If the start action is missing, please wait for further frames.
""") with gr.Group(elem_classes="progress-container"): progress_desc = gr.Markdown('') progress_bar = gr.HTML('') error_message = gr.HTML('', elem_id='error-message', visible=True) # Inputs ips = [input_image, prompt, n_prompt, seed, total_second_length, use_teacache] start_button.click( fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button] ) end_button.click(fn=end_process) block.launch()