Anonumous commited on
Commit
6ee7257
·
1 Parent(s): b914ac9
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +185 -0
  2. Makefile +13 -0
  3. README.md +53 -12
  4. apache2.0 +190 -0
  5. app.py +293 -0
  6. data/leaderboard.json +1 -0
  7. generate_initial_leaderboard.py +329 -0
  8. genned.json +1 -0
  9. leaderboard.json +155 -0
  10. m_data/.gitattributes +55 -0
  11. m_data/README.md +3 -0
  12. m_data/leaderboard.json +11 -0
  13. m_data/model_data/external/saiga_3_8bapsys.json +1 -0
  14. pyproject.toml +54 -0
  15. requirements.txt +23 -0
  16. src/display/about.py +128 -0
  17. src/display/css_html_js.py +98 -0
  18. src/display/formatting.py +36 -0
  19. src/display/utils.py +189 -0
  20. src/envs.py +31 -0
  21. src/gen/config/api_config.yaml +203 -0
  22. src/gen/config/judge_config-ru.yaml +35 -0
  23. src/gen/config/judge_config.yaml +40 -0
  24. src/gen/gen_answer.py +202 -0
  25. src/gen/gen_judgment.py +221 -0
  26. src/gen/show_result.py +279 -0
  27. src/gen/utils.py +375 -0
  28. src/leaderboard/build_leaderboard.py +159 -0
  29. src/leaderboard/filter_models.py +173 -0
  30. src/leaderboard/read_evals.py +261 -0
  31. src/populate.py +52 -0
  32. src/radial/radial.py +161 -0
  33. src/scripts/create_request_file.py +92 -0
  34. src/scripts/update_all_request_files.py +96 -0
  35. src/submission/check_validity.py +178 -0
  36. src/submission/submit.py +171 -0
  37. src/tools/collections.py +76 -0
  38. src/tools/model_backlinks.py +1309 -0
  39. src/tools/plots.py +158 -0
  40. style.css +28 -0
  41. temp_leaderboard/model_data/external/Claude_3.5_Sonnet.json +9 -0
  42. temp_leaderboard/model_data/external/Claude_3.7_Sonnet.json +9 -0
  43. temp_leaderboard/model_data/external/DeepSeek_V3_0324.json +9 -0
  44. temp_leaderboard/model_data/external/Gemini_2.0_Flash.json +9 -0
  45. temp_leaderboard/model_data/external/Gemini_2.5_Pro_Preview.json +9 -0
  46. temp_leaderboard/model_data/external/Gemma_3_12B.json +9 -0
  47. temp_leaderboard/model_data/external/Gemma_3_27B.json +9 -0
  48. temp_leaderboard/model_data/external/Gemma_3_4B.json +9 -0
  49. temp_leaderboard/model_data/external/GigaChat-2-Max.json +9 -0
  50. temp_leaderboard/model_data/external/GigaChat-2-Pro.json +9 -0
.gitignore ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .ruff_cache
2
+ # Byte-compiled / optimized / DLL files
3
+ __pycache__/
4
+ *.py[cod]
5
+ *$py.class
6
+
7
+ # C extensions
8
+ *.so
9
+
10
+ # Distribution / packaging
11
+ .Python
12
+ build/
13
+ develop-eggs/
14
+ dist/
15
+ downloads/
16
+ eggs/
17
+ .eggs/
18
+ lib/
19
+ lib64/
20
+ parts/
21
+ sdist/
22
+ var/
23
+ wheels/
24
+ pip-wheel-metadata/
25
+ share/python-wheels/
26
+ *.egg-info/
27
+ .installed.cfg
28
+ *.egg
29
+ MANIFEST
30
+
31
+ # PyInstaller
32
+ # Usually these files are written by a python script from a template
33
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
34
+ *.manifest
35
+ *.spec
36
+
37
+ # Installer logs
38
+ pip-log.txt
39
+ pip-delete-this-directory.txt
40
+
41
+ # Unit test / coverage reports
42
+ htmlcov/
43
+ .tox/
44
+ .nox/
45
+ .coverage
46
+ .coverage.*
47
+ .cache
48
+ nosetests.xml
49
+ coverage.xml
50
+ *.cover
51
+ *.py,cover
52
+ .hypothesis/
53
+ .pytest_cache/
54
+
55
+ # Translations
56
+ *.mo
57
+ *.pot
58
+
59
+ # Django stuff:
60
+ *.log
61
+ local_settings.py
62
+ db.sqlite3
63
+ db.sqlite3-journal
64
+
65
+ # Flask stuff:
66
+ instance/
67
+ .webassets-cache
68
+
69
+ # Scrapy stuff:
70
+ .scrapy
71
+
72
+ # Sphinx documentation
73
+ docs/_build/
74
+
75
+ # PyBuilder
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ .python-version
87
+
88
+ # pipenv
89
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
90
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
91
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
92
+ # install all needed dependencies.
93
+ #Pipfile.lock
94
+
95
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
96
+ __pypackages__/
97
+
98
+ # Celery stuff
99
+ celerybeat-schedule
100
+ celerybeat.pid
101
+
102
+ # SageMath parsed files
103
+ *.sage.py
104
+
105
+ # Environments
106
+ .env
107
+ .venv
108
+ env/env.sh
109
+ venv/
110
+ env.bak/
111
+ venv.bak/
112
+
113
+ # Spyder project settings
114
+ .spyderproject
115
+ .spyproject
116
+
117
+ # Rope project settings
118
+ .ropeproject
119
+
120
+ # mkdocs documentation
121
+ /site
122
+
123
+ # mypy
124
+ .mypy_cache/
125
+ .dmypy.json
126
+ dmypy.json
127
+
128
+ # Pyre type checker
129
+ .pyre/
130
+
131
+ # Files created by experiments
132
+ output/
133
+ snapshot/
134
+ *.m4a
135
+ notebooks/scratch.ipynb
136
+ notebooks/inspect.ipynb
137
+ notebooks/effects.ipynb
138
+ notebooks/*.ipynb
139
+ notebooks/*.gif
140
+ notebooks/*.wav
141
+ notebooks/*.mp4
142
+ *runs/
143
+ boards/
144
+ samples/
145
+ *.ipynb
146
+
147
+ results.json
148
+ metrics.csv
149
+ mprofile_*
150
+ mem.png
151
+
152
+ results/
153
+ mprofile*
154
+ *.png
155
+ # do not ignore the test wav file
156
+ !tests/audio/short_test_audio.wav
157
+ !tests/audio/output.wav
158
+ */.DS_Store
159
+ .DS_Store
160
+ env.sh
161
+ _codebraid/
162
+ **/*.html
163
+ **/*.exec.md
164
+ flagged/
165
+ log.txt
166
+ ckpt/
167
+ .syncthing*
168
+ tests/assets/
169
+ archived/
170
+
171
+ scratch/
172
+
173
+ runs-archive
174
+ lyrebird-audiotools
175
+ lyrebird-audio-codec
176
+ samples-*/**
177
+
178
+ gradio-outputs/
179
+ samples*/
180
+ models-all/
181
+ models.zip
182
+ audiotools/
183
+ descript-audio-codec/
184
+ # *.pth
185
+ .git-old
Makefile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: style format
2
+
3
+
4
+ style:
5
+ python -m black --line-length 119 .
6
+ python -m isort .
7
+ ruff check --fix .
8
+
9
+
10
+ quality:
11
+ python -m black --check --line-length 119 .
12
+ python -m isort --check-only .
13
+ ruff check .
README.md CHANGED
@@ -1,12 +1,53 @@
1
- ---
2
- title: DOoM Lb
3
- emoji: 📈
4
- colorFrom: pink
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 5.25.2
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DeathMath Leaderboard
2
+
3
+ DeathMath - это бенчмарк для оценки способности моделей решать сложные математические и физические задачи на русском языке.
4
+
5
+ ## Текущий лидерборд
6
+
7
+ Последнее обновление: 2025-04-20 16:33:11
8
+
9
+ | Модель | Общий балл | Математика | Физика | Токены | Время оценки |
10
+ |--------|------------|------------|---------|---------|--------------|
11
+ | o3-mini-high | 0.601 | 0.847 | 0.355 | 2,455,126 | 4015.4s |
12
+ | o4-mini-high | 0.591 | 0.863 | 0.318 | 1,898,964 | 4623.6s |
13
+ | Gemini 2.5 Pro Preview | 0.586 | 0.800 | 0.373 | 1,394,299 | 4533.2s |
14
+ | Gemini 2.0 Flash | 0.422 | 0.553 | 0.291 | 731,337 | 857.6s |
15
+ | gpt-4.1 | 0.386 | 0.563 | 0.209 | 405,803 | 1918.8s |
16
+ | Claude 3.7 Sonnet | 0.368 | 0.526 | 0.209 | 398,016 | 1095.8s |
17
+ | Claude 3.5 Sonnet | 0.339 | 0.432 | 0.245 | 222,241 | 670.5s |
18
+ | Gemma 3 27B | 0.321 | 0.468 | 0.173 | 357,617 | 2030.3s |
19
+ | Gemma 3 12B | 0.298 | 0.442 | 0.155 | 441,055 | 3916.3s |
20
+ | Qwen2.5 72B Instruct | 0.278 | 0.384 | 0.173 | 366,729 | 2460.1s |
21
+ | gpt-4o | 0.262 | 0.405 | 0.118 | 468,809 | 1078.4s |
22
+ | GigaChat-2-Max | 0.250 | 0.326 | 0.173 | 220,487 | 1006.2s |
23
+ | GigaChat-2-Pro | 0.209 | 0.326 | 0.091 | 212,196 | 1002.6s |
24
+ | GigaChat-Max | 0.139 | 0.179 | 0.100 | 201,090 | 978.8s |
25
+ | DeepSeek V3 0324 | 0.132 | 0.174 | 0.091 | 359,162 | 4257.7s |
26
+ | Gemma 3 4B | 0.124 | 0.221 | 0.027 | 572,095 | 1682.7s |
27
+ | GigaChat-2 | 0.094 | 0.142 | 0.045 | 299,747 | 834.7s |
28
+
29
+ ## Как принять участие в бенчмарке
30
+
31
+ Для участия в бенчмарке DeathMath:
32
+
33
+ 1. Клонируйте репозиторий и запустите тесты вашей модели
34
+ 2. Загрузите результаты через [HuggingFace Space](https://huggingface.co/spaces/Vikhrmodels/DeathMath-leaderboard)
35
+ 3. Дождитесь проверки и добавления результатов в лидерборд
36
+
37
+ ## Формат результатов
38
+
39
+ Результаты должны быть в формате JSON со следующей структурой:
40
+ ```json
41
+ {
42
+ "score": 0.586,
43
+ "math_score": 0.8,
44
+ "physics_score": 0.373,
45
+ "total_tokens": 1394299,
46
+ "evaluation_time": 4533.2,
47
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
48
+ }
49
+ ```
50
+
51
+ ## Лицензия
52
+
53
+ Бенчмарк распространяется под лицензией Apache 2.0
apache2.0 ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+
124
+
125
+ You may add Your own copyright statement to Your modifications and
126
+ may provide additional or different license terms and conditions
127
+ for use, reproduction, or distribution of Your modifications, or
128
+ for any such Derivative Works as a whole, provided Your use,
129
+ reproduction, and distribution of the Work otherwise complies with
130
+ the conditions stated in this License.
131
+
132
+
133
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
134
+ any Contribution intentionally submitted for inclusion in the Work
135
+ by You to the Licensor shall be under the terms and conditions of
136
+ this License, without any additional terms or conditions.
137
+ Notwithstanding the above, nothing herein shall supersede or modify
138
+ the terms of any separate license agreement you may have executed
139
+ with Licensor regarding such Contributions.
140
+
141
+ 6. Trademarks. This License does not grant permission to use the trade
142
+ names, trademarks, service marks, or product names of the Licensor,
143
+ except as required for reasonable and customary use in describing the
144
+ origin of the Work and reproducing the content of the NOTICE file.
145
+
146
+ 7. Disclaimer of Warranty. Unless required by applicable law or
147
+ agreed to in writing, Licensor provides the Work (and each
148
+ Contributor provides its Contributions) on an "AS IS" BASIS,
149
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
150
+ implied, including, without limitation, any warranties or conditions
151
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
152
+ PARTICULAR PURPOSE. You are solely responsible for determining the
153
+ appropriateness of using or redistributing the Work and assume any
154
+ risks associated with Your exercise of permissions under this License.
155
+
156
+ 8. Limitation of Liability. In no event and under no legal theory,
157
+ whether in tort (including negligence), contract, or otherwise,
158
+ unless required by applicable law (such as deliberate and grossly
159
+ negligent acts) or agreed to in writing, shall any Contributor be
160
+ liable to You for damages, including any direct, indirect, special,
161
+ incidental, or consequential damages of any character arising as a
162
+ result of this License or out of the use or inability to use the
163
+ Work (including but not limited to damages for loss of goodwill,
164
+ work stoppage, computer failure or malfunction, or any and all
165
+ other commercial damages or losses), even if such Contributor
166
+ has been advised of the possibility of such damages.
167
+
168
+ 9. Accepting Warranty or Additional Liability. While redistributing
169
+ the Work or Derivative Works thereof, You may choose to offer,
170
+ and charge a fee for, acceptance of support, warranty, indemnity,
171
+ or other liability obligations and/or rights consistent with this
172
+ License. However, in accepting such obligations, You may act only
173
+ on Your own behalf and on Your sole responsibility, not on behalf
174
+ of any other Contributor, and only if You agree to indemnify,
175
+ defend, and hold each Contributor harmless for any liability
176
+ incurred by, or claims asserted against, such Contributor by reason
177
+ of your accepting any such warranty or additional liability.
178
+
179
+ END OF TERMS AND CONDITIONS
180
+
181
+
182
+
183
+ Copyright [2024] [Vikhr models]
184
+
185
+
186
+ Unless required by applicable law or agreed to in writing, software
187
+ distributed under the License is distributed on an "AS IS" BASIS,
188
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
189
+ See the License for the specific language governing permissions and
190
+ limitations under the License.
app.py ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ os.makedirs("tmp", exist_ok=True)
4
+ os.environ['TMP_DIR'] = "tmp"
5
+ import subprocess
6
+ import shutil
7
+ import glob
8
+ import gradio as gr
9
+ import numpy as np
10
+ from src.radial.radial import create_plot
11
+ from apscheduler.schedulers.background import BackgroundScheduler
12
+ from gradio_leaderboard import Leaderboard, SelectColumns
13
+ from gradio_space_ci import enable_space_ci
14
+ import json
15
+ from io import BytesIO
16
+
17
+ def handle_file_upload(file):
18
+ file_path = file.name.split("/")[-1] if "/" in file.name else file.name
19
+ logging.info("File uploaded: %s", file_path)
20
+ with open(file.name, "r") as f:
21
+ v = json.load(f)
22
+ return v, file_path
23
+ def submit_file(v, file_path, mn, profile: gr.OAuthProfile | None):
24
+ if profile is None:
25
+ return "Hub Login Required"
26
+ new_file = v['results']
27
+ new_file['model'] = profile.username + "/" + mn
28
+ new_file['moviesmc'] = new_file['moviemc']["acc,none"]
29
+ new_file['musicmc'] = new_file['musicmc']["acc,none"]
30
+ new_file['booksmc'] = new_file['bookmc']["acc,none"]
31
+ new_file['mmluproru'] = new_file['mmluproru']["acc,none"]
32
+ new_file['lawmc'] = new_file['lawmc']["acc,none"]
33
+ new_file['model_dtype'] = v['config']["model_dtype"]
34
+ new_file['ppl'] = 0
35
+ new_file.pop('moviemc')
36
+ new_file.pop('bookmc')
37
+
38
+ buf = BytesIO()
39
+ buf.write(json.dumps(new_file).encode('utf-8'))
40
+ API.upload_file(
41
+ path_or_fileobj=buf,
42
+ path_in_repo="model_data/external/" + profile.username+mn + ".json",
43
+ repo_id="Vikhrmodels/s-openbench-eval",
44
+ repo_type="dataset",
45
+ )
46
+ os.environ[RESET_JUDGEMENT_ENV] = "1"
47
+ return "Success!"
48
+
49
+ from src.display.about import (
50
+ INTRODUCTION_TEXT,
51
+ TITLE,
52
+ LLM_BENCHMARKS_TEXT
53
+ )
54
+ from src.display.css_html_js import custom_css
55
+ from src.display.utils import (
56
+ AutoEvalColumn,
57
+ fields,
58
+ )
59
+ from src.envs import API, H4_TOKEN, HF_HOME, REPO_ID, RESET_JUDGEMENT_ENV
60
+ from src.leaderboard.build_leaderboard import build_leadearboard_df, download_openbench, download_dataset
61
+ import huggingface_hub
62
+ # huggingface_hub.login(token=H4_TOKEN)
63
+
64
+ os.environ["GRADIO_ANALYTICS_ENABLED"] = "false"
65
+
66
+ # Configure logging
67
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
68
+
69
+ # Start ephemeral Spaces on PRs (see config in README.md)
70
+ enable_space_ci()
71
+
72
+ # download_openbench()
73
+
74
+ def restart_space():
75
+ API.restart_space(repo_id=REPO_ID)
76
+ download_openbench()
77
+
78
+ def update_plot(selected_models):
79
+ return create_plot(selected_models)
80
+
81
+ def build_demo():
82
+ download_openbench()
83
+ demo = gr.Blocks(title="Small Shlepa", css=custom_css)
84
+ leaderboard_df = build_leadearboard_df()
85
+ with demo:
86
+ gr.HTML(TITLE)
87
+ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
88
+
89
+ with gr.Tabs(elem_classes="tab-buttons"):
90
+ with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
91
+ Leaderboard(
92
+ value=leaderboard_df,
93
+ datatype=[c.type for c in fields(AutoEvalColumn)],
94
+ select_columns=SelectColumns(
95
+ default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
96
+ cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
97
+ label="Select Columns to Display:",
98
+ ),
99
+ search_columns=[
100
+ AutoEvalColumn.model.name,
101
+ # AutoEvalColumn.fullname.name,
102
+ # AutoEvalColumn.license.name
103
+ ],
104
+ )
105
+
106
+ # with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=1):
107
+ # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
108
+ # with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=2):
109
+ # gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
110
+
111
+ with gr.TabItem("🚀 Submit ", elem_id="llm-benchmark-tab-table", id=3):
112
+ with gr.Row():
113
+ gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
114
+ with gr.Row():
115
+ gr.Markdown("# ✨ Submit your model here!", elem_classes="markdown-text")
116
+
117
+ with gr.Column():
118
+
119
+ # def upload_file(file,su,mn):
120
+ # file_path = file.name.split("/")[-1] if "/" in file.name else file.name
121
+ # logging.info("New submition: file saved to %s", file_path)
122
+ # with open(file.name, "r") as f:
123
+ # v=json.load(f)
124
+ # new_file = v['results']
125
+ # new_file['model'] = mn+"/"+su
126
+ # new_file['moviesmc']=new_file['moviemc']["acc,none"]
127
+ # new_file['musicmc']=new_file['musicmc']["acc,none"]
128
+ # new_file['booksmc']=new_file['bookmc']["acc,none"]
129
+ # new_file['lawmc']=new_file['lawmc']["acc,none"]
130
+ # # name = v['config']["model_args"].split('=')[1].split(',')[0]
131
+ # new_file['model_dtype'] = v['config']["model_dtype"]
132
+ # new_file['ppl'] = 0
133
+ # new_file.pop('moviemc')
134
+ # new_file.pop('bookmc')
135
+ # buf = BytesIO()
136
+ # buf.write(json.dumps(new_file).encode('utf-8'))
137
+ # API.upload_file(
138
+ # path_or_fileobj=buf,
139
+ # path_in_repo="model_data/external/" + su+mn + ".json",
140
+ # repo_id="Vikhrmodels/s-openbench-eval",
141
+ # repo_type="dataset",
142
+ # )
143
+ # os.environ[RESET_JUDGEMENT_ENV] = "1"
144
+ # return file.name
145
+ # gr.LoginButton()
146
+ model_name_textbox = gr.Textbox(label="Model name")
147
+ # submitter_username = gr.Textbox(label="Username")
148
+
149
+ # def toggle_upload_button(model_name, username):
150
+ # return bool(model_name) and bool(username)
151
+ file_output = gr.File(label="Drag and drop JSON file judgment here", type="filepath")
152
+ # upload_button = gr.Button("Click to Upload & Submit Answers", elem_id="upload_button",variant='primary')
153
+ uploaded_file = gr.State()
154
+ file_path = gr.State()
155
+ with gr.Row():
156
+ with gr.Column():
157
+ out = gr.Textbox("Статус отправки")
158
+ with gr.Column():
159
+ login_button = gr.LoginButton(elem_id="oauth-button")
160
+
161
+ submit_button = gr.Button("Submit File", elem_id="submit_button", variant='primary')
162
+
163
+ file_output.upload(
164
+ handle_file_upload,
165
+ file_output,
166
+ [uploaded_file, file_path]
167
+ )
168
+
169
+ submit_button.click(
170
+ submit_file,
171
+ [uploaded_file, file_path, model_name_textbox],
172
+ [out]
173
+ )
174
+
175
+ with gr.TabItem("📊 Analytics", elem_id="llm-benchmark-tab-table", id=4):
176
+ with gr.Column():
177
+ model_dropdown = gr.Dropdown(
178
+ choices=leaderboard_df["model"].tolist(),
179
+ label="Models",
180
+ value=leaderboard_df["model"].tolist(),
181
+ multiselect=True,
182
+ info="Select models"
183
+ )
184
+ with gr.Column():
185
+ plot = gr.Plot(update_plot(model_dropdown.value))
186
+ # plot = gr.Plot()
187
+ model_dropdown.change(
188
+ fn=update_plot,
189
+ inputs=[model_dropdown],
190
+ outputs=[plot]
191
+ )
192
+ return demo
193
+
194
+
195
+ # print(os.system('cd src/gen && ../../.venv/bin/python gen_judgment.py'))
196
+ # print(os.system('cd src/gen/ && python show_result.py --output'))
197
+
198
+
199
+ def update_board():
200
+ need_reset = os.environ.get(RESET_JUDGEMENT_ENV)
201
+ logging.info("Updating the judgement: %s", need_reset)
202
+ if need_reset != "1":
203
+ # return
204
+ pass
205
+ os.environ[RESET_JUDGEMENT_ENV] = "0"
206
+
207
+ # `shutil.rmtree("./m_data")` is a Python command that removes a directory and all its contents
208
+ # recursively. In this specific context, it is used to delete the directory named "m_data" along
209
+ # with all its files and subdirectories. This command helps in cleaning up the existing data in
210
+ # the "m_data" directory before downloading new dataset files into it.
211
+ # shutil.rmtree("./m_data")
212
+ # shutil.rmtree("./data")
213
+ download_dataset("Vikhrmodels/s-openbench-eval", "m_data")
214
+ data_list = [{"musicmc": 0.3021276595744681, "lawmc": 0.2800829875518672, "model": "apsys/saiga_3_8b", "moviesmc": 0.3472222222222222, "booksmc": 0.2800829875518672, "model_dtype": "torch.float16", "ppl": 0, 'mmluproru':0}]
215
+ for file in glob.glob("./m_data/model_data/external/*.json"):
216
+ with open(file) as f:
217
+ try:
218
+ data = json.load(f)
219
+ data_list.append(data)
220
+ except Exception as e:
221
+ pass # data was badly formatted, should not fail
222
+ print("DATALIST,", data_list)
223
+
224
+ if len(data_list)>1:
225
+ data_list.pop(0)
226
+
227
+ if len(data_list)>4:
228
+ with open("genned.json", "w") as f:
229
+ json.dump(data_list, f)
230
+
231
+
232
+ API.upload_file(
233
+ path_or_fileobj="genned.json",
234
+ path_in_repo="leaderboard.json",
235
+ repo_id="Vikhrmodels/s-shlepa-metainfo",
236
+ repo_type="dataset",
237
+ )
238
+ restart_space()
239
+
240
+
241
+ # gen_judgement_file = os.path.join(HF_HOME, "src/gen/gen_judgement.py")
242
+ # subprocess.run(["python3", gen_judgement_file], check=True)
243
+
244
+ def update_board_():
245
+ need_reset = os.environ.get(RESET_JUDGEMENT_ENV)
246
+ logging.info("Updating the judgement: %s", need_reset)
247
+ if need_reset != "1":
248
+ # return
249
+ pass
250
+ os.environ[RESET_JUDGEMENT_ENV] = "0"
251
+
252
+ # `shutil.rmtree("./m_data")` is a Python command that removes a directory and all its contents
253
+ # recursively. In this specific context, it is used to delete the directory named "m_data" along
254
+ # with all its files and subdirectories. This command helps in cleaning up the existing data in
255
+ # the "m_data" directory before downloading new dataset files into it.
256
+ # shutil.rmtree("./m_data")
257
+ # shutil.rmtree("./data")
258
+ download_dataset("Vikhrmodels/s-openbench-eval", "m_data")
259
+ data_list = [{"musicmc": 0.3021276595744681, "lawmc": 0.2800829875518672, "model": "apsys/saiga_3_8b", "moviesmc": 0.3472222222222222, "booksmc": 0.2800829875518672, "model_dtype": "torch.float16", "ppl": 0, 'mmluproru':0}]
260
+ for file in glob.glob("./m_data/model_data/external/*.json"):
261
+ with open(file) as f:
262
+ try:
263
+ data = json.load(f)
264
+ data_list.append(data)
265
+ except Exception as e:
266
+ pass # data was badly formatted, should not fail
267
+ print("DATALIST,", data_list)
268
+
269
+ if len(data_list)>1:
270
+ data_list.pop(0)
271
+
272
+ if len(data_list)>4:
273
+ with open("genned.json", "w") as f:
274
+ json.dump(data_list, f)
275
+
276
+
277
+ API.upload_file(
278
+ path_or_fileobj="genned.json",
279
+ path_in_repo="leaderboard.json",
280
+ repo_id="Vikhrmodels/s-shlepa-metainfo",
281
+ repo_type="dataset",
282
+ )
283
+
284
+ if __name__ == "__main__":
285
+ os.environ[RESET_JUDGEMENT_ENV] = "1"
286
+
287
+ scheduler = BackgroundScheduler()
288
+ update_board_()
289
+ scheduler.add_job(update_board, "interval", minutes=10)
290
+ scheduler.start()
291
+
292
+ demo_app = build_demo()
293
+ demo_app.launch(debug=True,share=True)
data/leaderboard.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"musicmc": 0.2936170212765957, "lawmc": 0.48094747682801237, "model": "apsys/saiga_3_8b", "moviesmc": 0.3402777777777778, "booksmc": 0.3112033195020747, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2723404255319149, "lawmc": 0.4850669412976313, "model": "Nexusflow/Starling-LM-7B-beta", "moviesmc": 0.38657407407407407, "booksmc": 0.3070539419087137, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.09361702127659574, "mmluproru": 0.10207253886010363, "lawmc": 0.11431513903192585, "model": "NousResearch/Llama-2-7b-hf", "moviesmc": 0.07175925925925926, "booksmc": 0.1078838174273859, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.20851063829787234, "lawmc": 0.47167868177136973, "model": "Salesforce/LLaMA-3-8B-SFR-Iterative-DPO-R", "moviesmc": 0.3055555555555556, "booksmc": 0.26141078838174275, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2680851063829787, "mmluproru": 0.20103626943005182, "lawmc": 0.5386199794026777, "model": "Vikhrmodels/it-5.2-fp16-cp", "moviesmc": 0.4537037037037037, "booksmc": 0.3070539419087137, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.3021276595744681, "lawmc": 0.544799176107106, "model": "alexwortega/saiga_submit", "moviesmc": 0.3958333333333333, "booksmc": 0.3381742738589212, "model_dtype": "torch.bfloat16", "ppl": 0}, {"musicmc": 0.28085106382978725, "mmluproru": 0.17979274611398963, "lawmc": 0.5324407826982492, "model": "apsys/T-lite-instruct-0.1", "moviesmc": 0.4699074074074074, "booksmc": 0.3360995850622407, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.28085106382978725, "mmluproru": 0.17979274611398963, "lawmc": 0.5324407826982492, "model": "apsys/tlite-it-0.1", "moviesmc": 0.4699074074074074, "booksmc": 0.3360995850622407, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2872340425531915, "lawmc": 0.5066941297631308, "model": "vikhr-52-7b-chat-hf/apsys", "moviesmc": 0.4837962962962963, "booksmc": 0.3070539419087137, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.28085106382978725, "mmluproru": 0.18808290155440416, "lawmc": 0.6426364572605562, "model": "apsys/vikhr-it-5.4-fp16-orpo-v2 ", "moviesmc": 0.4699074074074074, "booksmc": 0.33402489626556015, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.20851063829787234, "lawmc": 0.42636457260556127, "model": "cohere/aya-8b", "moviesmc": 0.3287037037037037, "booksmc": 0.24273858921161826, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2553191489361702, "mmluproru": 0.2621761658031088, "lawmc": 0.5818743563336766, "model": "google/gemma-2-9b", "moviesmc": 0.5046296296296297, "booksmc": 0.3360995850622407, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.25957446808510637, "mmluproru": 0.19378238341968912, "lawmc": 0.518022657054583, "model": "lightblue/suzume-llama-3-8B-multilingual", "moviesmc": 0.3287037037037037, "booksmc": 0.2966804979253112, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2936170212765957, "lawmc": 0.5345005149330587, "model": "RefalMachine/llama3 ushanka", "moviesmc": 0.35185185185185186, "booksmc": 0.3257261410788382, "model_dtype": "torch.bfloat16", "ppl": 0}, {"musicmc": 0.28297872340425534, "lawmc": 0.5406797116374872, "model": "microsoft/Phi-3-medium-4k-instruct", "moviesmc": 0.42824074074074076, "booksmc": 0.3817427385892116, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.3021276595744681, "lawmc": 0.544799176107106, "model": "IlyaGusev/saiga_llama3_8b", "moviesmc": 0.3958333333333333, "booksmc": 0.3381742738589212, "model_dtype": "torch.bfloat16", "ppl": 0}, {"musicmc": 0.251063829787234, "lawmc": 0.48712667353244077, "model": "apsys/vikhr-52-7b", "moviesmc": 0.4212962962962963, "booksmc": 0.3112033195020747, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.24468085106382978, "lawmc": 0.4788877445932029, "model": "apsys/vikhr-53-7b-32k", "moviesmc": 0.4050925925925926, "booksmc": 0.3049792531120332, "model_dtype": "torch.float16", "ppl": 0}]
generate_initial_leaderboard.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ Скрипт для генерации первоначального лидерборда DeathMath и загрузки данных в HuggingFace.
5
+ Использует результаты из директории results и загружает их в репозиторий Vikhrmodels/DeathMath-leaderboard-data.
6
+ """
7
+
8
+ import os
9
+ import json
10
+ import logging
11
+ import pandas as pd
12
+ import argparse
13
+ from pathlib import Path
14
+ from huggingface_hub import HfApi, create_repo
15
+ from datetime import datetime
16
+
17
+ # Настройка логирования
18
+ logging.basicConfig(
19
+ level=logging.INFO,
20
+ format="%(asctime)s - %(levelname)s - %(message)s",
21
+ handlers=[
22
+ logging.FileHandler("leaderboard_generation.log"),
23
+ logging.StreamHandler()
24
+ ]
25
+ )
26
+ logger = logging.getLogger(__name__)
27
+
28
+ # Константы
29
+ REPO_ID = "Vikhrmodels/DeathMath-leaderboard-data"
30
+ METAINFO_REPO_ID = "Vikhrmodels/DeathMath-leaderboard-metainfo"
31
+
32
+ def setup_repositories(token):
33
+ """
34
+ Создает необходимые репозитории на HuggingFace Hub, если они еще не существуют.
35
+
36
+ Args:
37
+ token (str): Токен для доступа к HuggingFace Hub
38
+ """
39
+ api = HfApi(token=token)
40
+
41
+ try:
42
+ # Проверка и создание репозитория для данных лидерборда
43
+ try:
44
+ api.repo_info(repo_id=REPO_ID, repo_type="dataset")
45
+ logger.info(f"Репозиторий {REPO_ID} уже существует")
46
+ except Exception:
47
+ logger.info(f"Создание репозитория для данных лидерборда: {REPO_ID}")
48
+ create_repo(repo_id=REPO_ID, repo_type="dataset", token=token)
49
+
50
+ # Проверка и создание репозитория для метаданных лидерборда
51
+ try:
52
+ api.repo_info(repo_id=METAINFO_REPO_ID, repo_type="dataset")
53
+ logger.info(f"Репозиторий {METAINFO_REPO_ID} уже существует")
54
+ except Exception:
55
+ logger.info(f"Создание репозитория для метаданных лидерборда: {METAINFO_REPO_ID}")
56
+ create_repo(repo_id=METAINFO_REPO_ID, repo_type="dataset", token=token)
57
+
58
+ return api
59
+ except Exception as e:
60
+ logger.error(f"Ошибка при создании репозиториев: {e}")
61
+ raise
62
+
63
+ def load_results(results_file):
64
+ """
65
+ Загружает результаты из JSON файла и удаляет дубликаты.
66
+
67
+ Args:
68
+ results_file (str): Путь к файлу с результатами
69
+
70
+ Returns:
71
+ list: Список записей для лидерборда без дубликатов
72
+ """
73
+ try:
74
+ with open(results_file, "r", encoding="utf-8") as f:
75
+ data = json.load(f)
76
+
77
+ leaderboard_entries = []
78
+ seen_models = set() # Множество для отслеживания уже обработанных моделей
79
+
80
+ for key, value in data.items():
81
+ if "_Combined_" in key: # берем только комбинированные результаты
82
+ model_name = value["model_name"]
83
+
84
+ # Пропускаем модель, если она уже была добавлена
85
+ if model_name in seen_models:
86
+ logger.info(f"Пропускаем дублирующуюся модель: {model_name}")
87
+ continue
88
+
89
+ # Добавляем модель во множество обработанных
90
+ seen_models.add(model_name)
91
+
92
+ leaderboard_entry = {
93
+ "model_name": model_name,
94
+ "score": value["score"],
95
+ "math_score": value["math_score"],
96
+ "physics_score": value["physics_score"],
97
+ "total_tokens": value["total_tokens"],
98
+ "evaluation_time": value["evaluation_time"],
99
+ "system_prompt": value.get("system_prompt",
100
+ "Вы - полезный помощник по математике и физике. Ответьте на русском языке.")
101
+ }
102
+ leaderboard_entries.append(leaderboard_entry)
103
+
104
+ # Сортировка по общему баллу
105
+ leaderboard_entries.sort(key=lambda x: x["score"], reverse=True)
106
+ logger.info(f"Загружено {len(leaderboard_entries)} уникальных моделей после удаления дубликатов")
107
+ return leaderboard_entries
108
+
109
+ except Exception as e:
110
+ logger.error(f"Ошибка при загрузке результатов: {e}")
111
+ raise
112
+
113
+ def prepare_directory_structure():
114
+ """
115
+ Создает необходимую структуру директорий для внешних моделей.
116
+
117
+ Returns:
118
+ str: Путь к временной директории с подготовленной структурой
119
+ """
120
+ temp_dir = Path("./temp_leaderboard")
121
+ model_data_dir = temp_dir / "model_data" / "external"
122
+
123
+ # Очистка и создание директорий
124
+ if temp_dir.exists():
125
+ import shutil
126
+ shutil.rmtree(temp_dir)
127
+
128
+ model_data_dir.mkdir(parents=True, exist_ok=True)
129
+
130
+ return str(temp_dir)
131
+
132
+ def upload_model_files(api, leaderboard_entries, temp_dir):
133
+ """
134
+ Загружает файлы моделей в репозиторий данных лидерборда.
135
+
136
+ Args:
137
+ api (HfApi): Экземпляр API для взаимодействия с HuggingFace
138
+ leaderboard_entries (list): Список записей для лидерборда
139
+ temp_dir (str): Путь к временной директории
140
+ """
141
+ model_data_dir = os.path.join(temp_dir, "model_data", "external")
142
+
143
+ for entry in leaderboard_entries:
144
+ model_name = entry["model_name"]
145
+ safe_filename = model_name.replace("/", "_").replace(" ", "_")
146
+ file_path = os.path.join(model_data_dir, f"{safe_filename}.json")
147
+
148
+ with open(file_path, "w", encoding="utf-8") as f:
149
+ json.dump(entry, f, ensure_ascii=False, indent=2)
150
+
151
+ # Загрузка файла модели в репозиторий
152
+ api.upload_file(
153
+ path_or_fileobj=file_path,
154
+ path_in_repo=f"model_data/external/{safe_filename}.json",
155
+ repo_id=REPO_ID,
156
+ repo_type="dataset"
157
+ )
158
+ logger.info(f"Загружен файл модели: {safe_filename}.json")
159
+
160
+ def generate_leaderboard_json(leaderboard_entries):
161
+ """
162
+ Создает JSON файл с данными лидерборда.
163
+
164
+ Args:
165
+ leaderboard_entries (list): Список записей для лидерборда
166
+
167
+ Returns:
168
+ str: Путь к созданному JSON файлу
169
+ """
170
+ leaderboard_file = "leaderboard.json"
171
+
172
+ with open(leaderboard_file, "w", encoding="utf-8") as f:
173
+ json.dump(leaderboard_entries, f, ensure_ascii=False, indent=2)
174
+
175
+ return leaderboard_file
176
+
177
+ def generate_readme(leaderboard_entries):
178
+ """
179
+ Генерирует README.md с информацией о лидерборде.
180
+
181
+ Args:
182
+ leaderboard_entries (list): Список записей для лидерборда
183
+
184
+ Returns:
185
+ str: Путь к созданному README файлу
186
+ """
187
+ readme_file = "README.md"
188
+
189
+ # Создаем DataFrame для удобного форматирования таблицы
190
+ df = pd.DataFrame(leaderboard_entries)
191
+
192
+ # Форматируем числовые колонки
193
+ for col in ["score", "math_score", "physics_score"]:
194
+ if col in df.columns:
195
+ df[col] = df[col].apply(lambda x: f"{x:.3f}")
196
+
197
+ if "total_tokens" in df.columns:
198
+ df["total_tokens"] = df["total_tokens"].apply(lambda x: f"{int(x):,}")
199
+
200
+ if "evaluation_time" in df.columns:
201
+ df["evaluation_time"] = df["evaluation_time"].apply(lambda x: f"{x:.1f}s")
202
+
203
+ # Создаем содержимое README
204
+ current_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
205
+
206
+ readme_content = f"""# DeathMath Leaderboard
207
+
208
+ DeathMath - это бенчмарк для оценки способности моделей решать сложные математические и физические задачи на русском языке.
209
+
210
+ ## Текущий лидерборд
211
+
212
+ Последнее обновление: {current_date}
213
+
214
+ | Модель | Общий балл | Математика | Физика | Токены | Время оценки |
215
+ |--------|------------|------------|---------|---------|--------------|
216
+ """
217
+
218
+ # Добавляем строки таблицы
219
+ for _, row in df.iterrows():
220
+ readme_content += f"| {row['model_name']} | {row['score']} | {row['math_score']} | {row['physics_score']} | {row.get('total_tokens', 'N/A')} | {row.get('evaluation_time', 'N/A')} |\n"
221
+
222
+ readme_content += """
223
+ ## Как принять участие в бенчмарке
224
+
225
+ Для участия в бенчмарке DeathMath:
226
+
227
+ 1. Клонируйте репозиторий и запустите тесты вашей модели
228
+ 2. Загрузите результаты через [HuggingFace Space](https://huggingface.co/spaces/Vikhrmodels/DeathMath-leaderboard)
229
+ 3. Дождитесь проверки и добавления результатов в лидерборд
230
+
231
+ ## Формат результатов
232
+
233
+ Результаты должны быть в формате JSON со следующей структурой:
234
+ ```json
235
+ {
236
+ "score": 0.586,
237
+ "math_score": 0.8,
238
+ "physics_score": 0.373,
239
+ "total_tokens": 1394299,
240
+ "evaluation_time": 4533.2,
241
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
242
+ }
243
+ ```
244
+
245
+ ## Лицензия
246
+
247
+ Бенчмарк распространяется под лицензией Apache 2.0
248
+ """
249
+
250
+ with open(readme_file, "w", encoding="utf-8") as f:
251
+ f.write(readme_content)
252
+
253
+ return readme_file
254
+
255
+ def upload_leaderboard_files(api, leaderboard_file, readme_file):
256
+ """
257
+ Загружает файлы лидерборда в репозиторий метаданных.
258
+
259
+ Args:
260
+ api (HfApi): Экземпляр API для взаимодействия с HuggingFace
261
+ leaderboard_file (str): Путь к JSON файлу лидерборда
262
+ readme_file (str): Путь к README файлу
263
+ """
264
+ # Загрузка JSON лидерборда
265
+ api.upload_file(
266
+ path_or_fileobj=leaderboard_file,
267
+ path_in_repo="leaderboard.json",
268
+ repo_id=METAINFO_REPO_ID,
269
+ repo_type="dataset"
270
+ )
271
+ logger.info(f"Загружен файл лидерборда: leaderboard.json в {METAINFO_REPO_ID}")
272
+
273
+ # Загрузка README
274
+ api.upload_file(
275
+ path_or_fileobj=readme_file,
276
+ path_in_repo="README.md",
277
+ repo_id=METAINFO_REPO_ID,
278
+ repo_type="dataset"
279
+ )
280
+ logger.info(f"Загружен README: README.md в {METAINFO_REPO_ID}")
281
+
282
+ def main():
283
+ # Парсинг аргументов командной строки
284
+ parser = argparse.ArgumentParser(description="Генерация первоначального лидерборда DeathMath")
285
+ parser.add_argument("--results", default="../results/leaderboard_results.json",
286
+ help="Путь к файлу с результатами (по умолчанию: ../results/leaderboard_results.json)")
287
+ parser.add_argument("--token", required=True, help="Токен для доступа к HuggingFace Hub")
288
+
289
+ args = parser.parse_args()
290
+
291
+ try:
292
+ logger.info("Начинаем генерацию лидерборда DeathMath")
293
+
294
+ # Настраиваем репозитории
295
+ api = setup_repositories(args.token)
296
+ logger.info("Репозитории успешно настроены")
297
+
298
+ # Загружаем результаты
299
+ leaderboard_entries = load_results(args.results)
300
+ logger.info(f"Загружено {len(leaderboard_entries)} записей для лидерборда")
301
+
302
+ # Подготавливаем структуру директорий
303
+ temp_dir = prepare_directory_structure()
304
+ logger.info(f"Создана временная директория: {temp_dir}")
305
+
306
+ # Загружаем файлы моделей
307
+ upload_model_files(api, leaderboard_entries, temp_dir)
308
+ logger.info("Файлы моделей успешно загружены")
309
+
310
+ # Генерируем JSON лидерборда
311
+ leaderboard_file = generate_leaderboard_json(leaderboard_entries)
312
+ logger.info(f"Создан файл лидерборда: {leaderboard_file}")
313
+
314
+ # Генерируем README
315
+ readme_file = generate_readme(leaderboard_entries)
316
+ logger.info(f"Создан README: {readme_file}")
317
+
318
+ # Загружаем файлы лидерборда
319
+ upload_leaderboard_files(api, leaderboard_file, readme_file)
320
+ logger.info("Файлы лидерборда успешно загружены")
321
+
322
+ logger.info("Генерация лидерборда успешно завершена!")
323
+
324
+ except Exception as e:
325
+ logger.error(f"Ошибка при генерации лидерборда: {e}")
326
+ raise
327
+
328
+ if __name__ == "__main__":
329
+ main()
genned.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"musicmc": 0.2936170212765957, "lawmc": 0.5345005149330587, "model": "RefalMachine/llama3 ushanka", "moviesmc": 0.35185185185185186, "booksmc": 0.3257261410788382, "model_dtype": "torch.bfloat16", "ppl": 0}, {"musicmc": 0.251063829787234, "lawmc": 0.48712667353244077, "model": "apsys/vikhr-52-7b", "moviesmc": 0.4212962962962963, "booksmc": 0.3112033195020747, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.09361702127659574, "mmluproru": 0.10207253886010363, "lawmc": 0.11431513903192585, "model": "NousResearch/Llama-2-7b-hf", "moviesmc": 0.07175925925925926, "booksmc": 0.1078838174273859, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2553191489361702, "mmluproru": 0.2621761658031088, "lawmc": 0.5818743563336766, "model": "google/gemma-2-9b", "moviesmc": 0.5046296296296297, "booksmc": 0.3360995850622407, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.20851063829787234, "lawmc": 0.42636457260556127, "model": "cohere/aya-8b", "moviesmc": 0.3287037037037037, "booksmc": 0.24273858921161826, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2936170212765957, "lawmc": 0.48094747682801237, "model": "apsys/saiga_3_8b", "moviesmc": 0.3402777777777778, "booksmc": 0.3112033195020747, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.3021276595744681, "lawmc": 0.544799176107106, "model": "alexwortega/saiga_submit", "moviesmc": 0.3958333333333333, "booksmc": 0.3381742738589212, "model_dtype": "torch.bfloat16", "ppl": 0}, {"musicmc": 0.28297872340425534, "lawmc": 0.5406797116374872, "model": "microsoft/Phi-3-medium-4k-instruct", "moviesmc": 0.42824074074074076, "booksmc": 0.3817427385892116, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.28085106382978725, "mmluproru": 0.17979274611398963, "lawmc": 0.5324407826982492, "model": "apsys/tlite-it-0.1", "moviesmc": 0.4699074074074074, "booksmc": 0.3360995850622407, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2680851063829787, "mmluproru": 0.20103626943005182, "lawmc": 0.5386199794026777, "model": "Vikhrmodels/it-5.2-fp16-cp", "moviesmc": 0.4537037037037037, "booksmc": 0.3070539419087137, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2723404255319149, "lawmc": 0.4850669412976313, "model": "Nexusflow/Starling-LM-7B-beta", "moviesmc": 0.38657407407407407, "booksmc": 0.3070539419087137, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.20851063829787234, "lawmc": 0.47167868177136973, "model": "Salesforce/LLaMA-3-8B-SFR-Iterative-DPO-R", "moviesmc": 0.3055555555555556, "booksmc": 0.26141078838174275, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.25957446808510637, "mmluproru": 0.19378238341968912, "lawmc": 0.518022657054583, "model": "lightblue/suzume-llama-3-8B-multilingual", "moviesmc": 0.3287037037037037, "booksmc": 0.2966804979253112, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.28085106382978725, "mmluproru": 0.18808290155440416, "lawmc": 0.6426364572605562, "model": "apsys/vikhr-it-5.4-fp16-orpo-v2 ", "moviesmc": 0.4699074074074074, "booksmc": 0.33402489626556015, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2872340425531915, "lawmc": 0.5066941297631308, "model": "vikhr-52-7b-chat-hf/apsys", "moviesmc": 0.4837962962962963, "booksmc": 0.3070539419087137, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.3021276595744681, "lawmc": 0.544799176107106, "model": "IlyaGusev/saiga_llama3_8b", "moviesmc": 0.3958333333333333, "booksmc": 0.3381742738589212, "model_dtype": "torch.bfloat16", "ppl": 0}, {"musicmc": 0.24468085106382978, "lawmc": 0.4788877445932029, "model": "apsys/vikhr-53-7b-32k", "moviesmc": 0.4050925925925926, "booksmc": 0.3049792531120332, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.28085106382978725, "mmluproru": 0.17979274611398963, "lawmc": 0.5324407826982492, "model": "apsys/T-lite-instruct-0.1", "moviesmc": 0.4699074074074074, "booksmc": 0.3360995850622407, "model_dtype": "torch.float16", "ppl": 0}]
leaderboard.json ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "model_name": "o3-mini-high",
4
+ "score": 0.600956937799043,
5
+ "math_score": 0.8473684210526315,
6
+ "physics_score": 0.35454545454545455,
7
+ "total_tokens": 2455126,
8
+ "evaluation_time": 4015.4359402656555,
9
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
10
+ },
11
+ {
12
+ "model_name": "o4-mini-high",
13
+ "score": 0.5906698564593301,
14
+ "math_score": 0.8631578947368421,
15
+ "physics_score": 0.3181818181818182,
16
+ "total_tokens": 1898964,
17
+ "evaluation_time": 4623.6044108867645,
18
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
19
+ },
20
+ {
21
+ "model_name": "Gemini 2.5 Pro Preview",
22
+ "score": 0.5863636363636364,
23
+ "math_score": 0.8,
24
+ "physics_score": 0.37272727272727274,
25
+ "total_tokens": 1394299,
26
+ "evaluation_time": 4533.155055761337,
27
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
28
+ },
29
+ {
30
+ "model_name": "Gemini 2.0 Flash",
31
+ "score": 0.4217703349282297,
32
+ "math_score": 0.5526315789473685,
33
+ "physics_score": 0.2909090909090909,
34
+ "total_tokens": 731337,
35
+ "evaluation_time": 857.6413371562958,
36
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
37
+ },
38
+ {
39
+ "model_name": "gpt-4.1",
40
+ "score": 0.3861244019138756,
41
+ "math_score": 0.5631578947368421,
42
+ "physics_score": 0.20909090909090908,
43
+ "total_tokens": 405803,
44
+ "evaluation_time": 1918.7988040447235,
45
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
46
+ },
47
+ {
48
+ "model_name": "Claude 3.7 Sonnet",
49
+ "score": 0.36770334928229664,
50
+ "math_score": 0.5263157894736842,
51
+ "physics_score": 0.20909090909090908,
52
+ "total_tokens": 398016,
53
+ "evaluation_time": 1095.7695870399475,
54
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
55
+ },
56
+ {
57
+ "model_name": "Claude 3.5 Sonnet",
58
+ "score": 0.33851674641148327,
59
+ "math_score": 0.43157894736842106,
60
+ "physics_score": 0.24545454545454545,
61
+ "total_tokens": 222241,
62
+ "evaluation_time": 670.5163931846619,
63
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
64
+ },
65
+ {
66
+ "model_name": "Gemma 3 27B",
67
+ "score": 0.32057416267942584,
68
+ "math_score": 0.46842105263157896,
69
+ "physics_score": 0.17272727272727273,
70
+ "total_tokens": 357617,
71
+ "evaluation_time": 2030.33176279068,
72
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
73
+ },
74
+ {
75
+ "model_name": "Gemma 3 12B",
76
+ "score": 0.29832535885167466,
77
+ "math_score": 0.4421052631578947,
78
+ "physics_score": 0.15454545454545454,
79
+ "total_tokens": 441055,
80
+ "evaluation_time": 3916.2552330493927,
81
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
82
+ },
83
+ {
84
+ "model_name": "Qwen2.5 72B Instruct",
85
+ "score": 0.2784688995215311,
86
+ "math_score": 0.38421052631578945,
87
+ "physics_score": 0.17272727272727273,
88
+ "total_tokens": 366729,
89
+ "evaluation_time": 2460.056980371475,
90
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
91
+ },
92
+ {
93
+ "model_name": "gpt-4o",
94
+ "score": 0.2617224880382775,
95
+ "math_score": 0.4052631578947368,
96
+ "physics_score": 0.11818181818181818,
97
+ "total_tokens": 468809,
98
+ "evaluation_time": 1078.4077816009521,
99
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
100
+ },
101
+ {
102
+ "model_name": "GigaChat-2-Max",
103
+ "score": 0.24952153110047848,
104
+ "math_score": 0.3263157894736842,
105
+ "physics_score": 0.17272727272727273,
106
+ "total_tokens": 220487,
107
+ "evaluation_time": 1006.1656014919281,
108
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
109
+ },
110
+ {
111
+ "model_name": "GigaChat-2-Pro",
112
+ "score": 0.20861244019138758,
113
+ "math_score": 0.3263157894736842,
114
+ "physics_score": 0.09090909090909091,
115
+ "total_tokens": 212196,
116
+ "evaluation_time": 1002.5515208244324,
117
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
118
+ },
119
+ {
120
+ "model_name": "GigaChat-Max",
121
+ "score": 0.1394736842105263,
122
+ "math_score": 0.17894736842105263,
123
+ "physics_score": 0.1,
124
+ "total_tokens": 201090,
125
+ "evaluation_time": 978.7567253112793,
126
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
127
+ },
128
+ {
129
+ "model_name": "DeepSeek V3 0324",
130
+ "score": 0.13229665071770336,
131
+ "math_score": 0.1736842105263158,
132
+ "physics_score": 0.09090909090909091,
133
+ "total_tokens": 359162,
134
+ "evaluation_time": 4257.714092254639,
135
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
136
+ },
137
+ {
138
+ "model_name": "Gemma 3 4B",
139
+ "score": 0.12416267942583732,
140
+ "math_score": 0.22105263157894736,
141
+ "physics_score": 0.02727272727272727,
142
+ "total_tokens": 572095,
143
+ "evaluation_time": 1682.6655840873718,
144
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
145
+ },
146
+ {
147
+ "model_name": "GigaChat-2",
148
+ "score": 0.0937799043062201,
149
+ "math_score": 0.14210526315789473,
150
+ "physics_score": 0.045454545454545456,
151
+ "total_tokens": 299747,
152
+ "evaluation_time": 834.6775443553925,
153
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
154
+ }
155
+ ]
m_data/.gitattributes ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # Image files - compressed
53
+ *.jpg filter=lfs diff=lfs merge=lfs -text
54
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
55
+ *.webp filter=lfs diff=lfs merge=lfs -text
m_data/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
m_data/leaderboard.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "musicmc": 0,
4
+ "lawmc": 0.2800829875518672,
5
+ "moviesmc": 0.3472222222222222,
6
+ "booksmc": 0.2800829875518672,
7
+ "model_dtype": "torch.float16",
8
+ "model": "apsys/apsys1",
9
+ "ppl": 0
10
+ }
11
+ ]
m_data/model_data/external/saiga_3_8bapsys.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"musicmc": 0.2936170212765957, "lawmc": 0.48094747682801237, "model": "apsys/saiga_3_8b", "moviesmc": 0.3402777777777778, "booksmc": 0.3112033195020747, "model_dtype": "torch.float16", "ppl": 0}
pyproject.toml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.ruff]
2
+ line-length = 120
3
+ target-version = "py312"
4
+ include = ["*.py", "*.pyi", "**/pyproject.toml", "*.ipynb"]
5
+ ignore=["I","EM","FBT","TRY003","S101","D101","D102","D103","D104","D105","G004","D107","FA102"]
6
+ fixable=["ALL"]
7
+ select=["ALL"]
8
+
9
+ [tool.ruff.lint]
10
+ select = ["E", "F"]
11
+ fixable = ["ALL"]
12
+ ignore = ["E501"] # line too long (black is taking care of this)
13
+
14
+ [tool.isort]
15
+ profile = "black"
16
+ line_length = 119
17
+
18
+ [tool.black]
19
+ line-length = 119
20
+
21
+ [tool.poetry]
22
+ package-mode = false
23
+ name = "open-llm-leaderboard"
24
+ version = "0.1.0"
25
+ description = ""
26
+ authors = []
27
+ readme = "README.md"
28
+
29
+ [tool.poetry.dependencies]
30
+ python = "3.12.1"
31
+ apscheduler = "3.10.1"
32
+ black = "23.11.0"
33
+ click = "8.1.3"
34
+ datasets = "2.14.5"
35
+ huggingface-hub = ">=0.18.0"
36
+ matplotlib = "3.8.4"
37
+ numpy = "1.26.0"
38
+ pandas = "2.2.2"
39
+ plotly = "5.14.1"
40
+ python-dateutil = "2.8.2"
41
+ requests = "2.28.2"
42
+ sentencepiece = "^0.2.0"
43
+ tqdm = "4.65.0"
44
+ transformers = "4.40.0"
45
+ tokenizers = ">=0.15.0"
46
+ gradio-space-ci = {git = "https://huggingface.co/spaces/Wauplin/gradio-space-ci", rev = "0.2.3"}
47
+ gradio = " 4.20.0"
48
+ isort = "^5.13.2"
49
+ ruff = "^0.3.5"
50
+ gradio-leaderboard = "0.0.8"
51
+
52
+ [build-system]
53
+ requires = ["poetry-core"]
54
+ build-backend = "poetry.core.masonry.api"
requirements.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ APScheduler==3.10.1
2
+ black==23.11.0
3
+ click==8.1.3
4
+ datasets==2.14.5
5
+ huggingface-hub>=0.18.0
6
+ matplotlib==3.8.4
7
+ numpy==1.26.0
8
+ pandas==2.2.2
9
+ plotly==5.14.1
10
+ python-dateutil==2.8.2
11
+ requests==2.28.2
12
+ sentencepiece
13
+ tqdm==4.65.0
14
+ transformers==4.40.0
15
+ tokenizers>=0.15.0
16
+ gradio-space-ci @ git+https://huggingface.co/spaces/Wauplin/[email protected] # CI !!!
17
+ gradio==4.20.0
18
+ gradio_leaderboard==0.0.8
19
+ tiktoken
20
+ openai
21
+ shortuuid
22
+ httpx==0.25.2
23
+ scikit-learn
src/display/about.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.display.utils import ModelType
2
+
3
+ TITLE = """<h1 style="text-align:left;float:left; id="space-title">DeathMath Leaderboard</h1> <h3 style="text-align:left;float:left;"> Оценка моделей на сложных математических и физических задачах </h3>"""
4
+
5
+ INTRODUCTION_TEXT = """
6
+ # DeathMath Benchmark
7
+
8
+ DeathMath - это бенчмарк для оценки способности моделей решать сложные математические и физические задачи на русском языке.
9
+
10
+ ## Что оценивает бенчмарк?
11
+
12
+ - **RussianMath Score**: Оценка способности решать математические задачи на русском языке
13
+ - **RussianPhysics Score**: Оценка способности решать задачи по физике на русском языке
14
+ - **Combined Score**: Общая оценка (среднее математики и физики)
15
+ """
16
+
17
+ LLM_BENCHMARKS_TEXT = """
18
+ ## Как запустить бенчмарк DeathMath
19
+
20
+ Для оценки вашей модели на бенчмарке DeathMath вам нужно:
21
+
22
+ ### Установка
23
+ Клонируйте репозиторий DeathMath и установите необходимые зависимости:
24
+ ```bash
25
+ git clone https://github.com/DeathMath/benchmark.git
26
+ cd DeathMath
27
+ pip install -r requirements.txt
28
+ ```
29
+
30
+ ### Запуск
31
+ Для запуска оценки используйте скрипт runner.py:
32
+ ```bash
33
+ python runner.py --config configs/run.yaml --model your_model_name_or_path
34
+ ```
35
+
36
+ ### Формат результатов
37
+ После выполнения оценки, результаты будут сохранены в директории `results/`. Вам нужно будет подготовить JSON файл с результатами в следующем формате:
38
+
39
+ ```json
40
+ {
41
+ "score": 0.586,
42
+ "math_score": 0.8,
43
+ "physics_score": 0.373,
44
+ "total_tokens": 1394299,
45
+ "evaluation_time": 4533.2,
46
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
47
+ }
48
+ ```
49
+
50
+ ### Загрузка результатов
51
+ Загрузите полученный JSON файл через вкладку "Submit Model" на этом лидерборде.
52
+
53
+ ### Политика против читерства
54
+ При обнаружении попыток манипуляции результатами или модификации выходного файла, мы оставляем за собой право удалить ваш результат из лидерборда.
55
+ """
56
+
57
+ FAQ_TEXT = """
58
+ ## Часто задаваемые вопросы
59
+
60
+ ### Общие вопросы
61
+ **Q: Какие типы моделей поддерживаются?**
62
+ A: Мы поддерживаем любые языковые модели, которые можно запустить локально или через API, и которые могут решать задачи на русском языке.
63
+
64
+ **Q: Как оцениваются модели в бенчмарке?**
65
+ A: Модели оцениваются по способности решать математические и физические задачи на русском языке. Оценки выставляются на основе правильности решений.
66
+
67
+ ### Отправка результатов
68
+ **Q: Как отправить результаты моей модели?**
69
+ A: Запустите оценку, подготовьте JSON файл с результатами и загрузите его через вкладку "Submit Model".
70
+
71
+ **Q: Могу ли я обновить результаты моей модели?**
72
+ A: Да, вы можете отправить новые результаты той же модели, если, например, вы улучшили ее работу.
73
+
74
+ ### Технические вопросы
75
+ **Q: Что делать, если возникли проблемы с запуском оценки?**
76
+ A: Проверьте правильность установки всех зависимостей и конфигурации. Если проблема не решается, создайте issue в репозитории проекта.
77
+
78
+ **Q: Как проверяются результаты на достоверность?**
79
+ A: Мы анализируем распределение результатов и подозрительные результаты могут быть проверены дополнительно.
80
+ """
81
+
82
+ EVALUATION_QUEUE_TEXT = f"""
83
+ # Evaluation Queue for the 🤗 Open LLM Leaderboard
84
+
85
+ Models added here will be automatically evaluated on the 🤗 cluster.
86
+
87
+ ## Don't forget to read the FAQ and the About tabs for more information!
88
+
89
+ ## First steps before submitting a model
90
+
91
+ ### 1) Make sure you can load your model and tokenizer using AutoClasses:
92
+ ```python
93
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
94
+ config = AutoConfig.from_pretrained("your model name", revision=revision)
95
+ model = AutoModel.from_pretrained("your model name", revision=revision)
96
+ tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
97
+ ```
98
+ If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
99
+
100
+ Note: make sure your model is public!
101
+ Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
102
+
103
+ ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
104
+ It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
105
+
106
+ ### 3) Make sure your model has an open license!
107
+ This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
108
+
109
+ ### 4) Fill up your model card
110
+ When we add extra information about models to the leaderboard, it will be automatically taken from the model card
111
+
112
+ ### 5) Select the correct precision
113
+ Not all models are converted properly from `float16` to `bfloat16`, and selecting the wrong precision can sometimes cause evaluation error (as loading a `bf16` model in `fp16` can sometimes generate NaNs, depending on the weight range).
114
+
115
+ <b>Note:</b> Please be advised that when submitting, git <b>branches</b> and <b>tags</b> will be strictly tied to the <b>specific commit</b> present at the time of submission. This ensures revision consistency.
116
+ ## Model types
117
+ {icons}
118
+ """
119
+
120
+ CITATION_BUTTON_LABEL = "Цитирование бенчмарка DeathMath"
121
+ CITATION_BUTTON_TEXT = r"""
122
+ @misc{deathmathbenchmark,
123
+ title = {DeathMath: A Benchmark for Mathematical and Physics Problem Solving in Russian},
124
+ year = {2025},
125
+ publisher = {DeathMath Team},
126
+ howpublished = {\url{https://huggingface.co/spaces/DeathMath/leaderboard}}
127
+ }
128
+ """
src/display/css_html_js.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ custom_css = """
2
+ /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
3
+ table td:first-child,
4
+ table th:first-child {
5
+ max-width: 400px;
6
+ overflow: auto;
7
+ white-space: nowrap;
8
+ }
9
+
10
+ /* Full width space */
11
+ .gradio-container {
12
+ max-width: 95%!important;
13
+ }
14
+
15
+ /* Text style and margins */
16
+ .markdown-text {
17
+ font-size: 16px !important;
18
+ }
19
+
20
+ #models-to-add-text {
21
+ font-size: 18px !important;
22
+ }
23
+
24
+ #citation-button span {
25
+ font-size: 16px !important;
26
+ }
27
+
28
+ #citation-button textarea {
29
+ font-size: 16px !important;
30
+ }
31
+
32
+ #citation-button > label > button {
33
+ margin: 6px;
34
+ transform: scale(1.3);
35
+ }
36
+
37
+ #search-bar-table-box > div:first-child {
38
+ background: none;
39
+ border: none;
40
+ }
41
+
42
+ #search-bar {
43
+ padding: 0px;
44
+ }
45
+
46
+ .tab-buttons button {
47
+ font-size: 20px;
48
+ }
49
+
50
+ /* Filters style */
51
+ #filter_type{
52
+ border: 0;
53
+ padding-left: 0;
54
+ padding-top: 0;
55
+ }
56
+ #filter_type label {
57
+ display: flex;
58
+ }
59
+ #filter_type label > span{
60
+ margin-top: var(--spacing-lg);
61
+ margin-right: 0.5em;
62
+ }
63
+ #filter_type label > .wrap{
64
+ width: 103px;
65
+ }
66
+ #filter_type label > .wrap .wrap-inner{
67
+ padding: 2px;
68
+ }
69
+ #filter_type label > .wrap .wrap-inner input{
70
+ width: 1px
71
+ }
72
+ #filter-columns-type{
73
+ border:0;
74
+ padding:0.5;
75
+ }
76
+ #filter-columns-size{
77
+ border:0;
78
+ padding:0.5;
79
+ }
80
+ #box-filter > .form{
81
+ border: 0
82
+ }
83
+ #oauth-button {
84
+ height: 100%;
85
+ min-width: 100%;
86
+ white-space: nowrap;
87
+ padding: 10px 20px;
88
+ border-radius: 4px;
89
+ }
90
+ """
91
+
92
+ get_window_url_params = """
93
+ function(url_params) {
94
+ const params = new URLSearchParams(window.location.search);
95
+ url_params = Object.fromEntries(params);
96
+ return url_params;
97
+ }
98
+ """
src/display/formatting.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import HfApi
2
+
3
+ API = HfApi()
4
+
5
+
6
+ def model_hyperlink(link, model_name):
7
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
8
+
9
+
10
+ def make_clickable_model(model_name):
11
+ link = f"https://huggingface.co/{model_name}"
12
+
13
+ details_model_name = model_name.replace("/", "__")
14
+ details_link = f"https://huggingface.co/datasets/open-llm-leaderboard/details_{details_model_name}"
15
+
16
+ return model_hyperlink(link, model_name) + " " + model_hyperlink(details_link, "📑")
17
+
18
+
19
+ def styled_error(error):
20
+ return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
21
+
22
+
23
+ def styled_warning(warn):
24
+ return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
25
+
26
+
27
+ def styled_message(message):
28
+ return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
29
+
30
+
31
+ def has_no_nan_values(df, columns):
32
+ return df[columns].notna().all(axis=1)
33
+
34
+
35
+ def has_nan_values(df, columns):
36
+ return df[columns].isna().any(axis=1)
src/display/utils.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, make_dataclass
2
+ from enum import Enum
3
+ import json
4
+ import logging
5
+ from datetime import datetime
6
+ import pandas as pd
7
+
8
+
9
+ # Configure logging
10
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
11
+
12
+
13
+ def parse_datetime(datetime_str):
14
+ formats = [
15
+ "%Y-%m-%dT%H-%M-%S.%f", # Format with dashes
16
+ "%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons
17
+ "%Y-%m-%dT%H %M %S.%f", # Spaces as separator
18
+ ]
19
+
20
+ for fmt in formats:
21
+ try:
22
+ return datetime.strptime(datetime_str, fmt)
23
+ except ValueError:
24
+ continue
25
+ # in rare cases set unix start time for files with incorrect time (legacy files)
26
+ logging.error(f"No valid date format found for: {datetime_str}")
27
+ return datetime(1970, 1, 1)
28
+
29
+
30
+ def load_json_data(file_path):
31
+ """Safely load JSON data from a file."""
32
+ try:
33
+ with open(file_path, "r") as file:
34
+ return json.load(file)
35
+ except json.JSONDecodeError:
36
+ print(f"Error reading JSON from {file_path}")
37
+ return None # Or raise an exception
38
+
39
+
40
+ def fields(raw_class):
41
+ return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
42
+
43
+
44
+ @dataclass
45
+ class Task:
46
+ benchmark: str
47
+ metric: str
48
+ col_name: str
49
+
50
+
51
+ class Tasks(Enum):
52
+ math = Task("RussianMath", "score", "math_score")
53
+ physics = Task("RussianPhysics", "score", "physics_score")
54
+ combined = Task("Combined", "score", "score")
55
+
56
+
57
+ # These classes are for user facing column names,
58
+ # to avoid having to change them all around the code
59
+ # when a modif is needed
60
+ @dataclass(frozen=True)
61
+ class ColumnContent:
62
+ name: str
63
+ type: str
64
+ displayed_by_default: bool
65
+ hidden: bool = False
66
+ never_hidden: bool = False
67
+ dummy: bool = False
68
+
69
+
70
+ auto_eval_column_dict = []
71
+ # Init
72
+ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("model", "markdown", True, never_hidden=True)])
73
+ # Scores
74
+ auto_eval_column_dict.append(["score", ColumnContent, ColumnContent("score", "number", True)])
75
+ for task in Tasks:
76
+ if task != Tasks.combined: # Combined score уже добавлен выше
77
+ auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
78
+
79
+ # Model information
80
+ auto_eval_column_dict.append(["total_tokens", ColumnContent, ColumnContent("total_tokens", "number", False)])
81
+ auto_eval_column_dict.append(["evaluation_time", ColumnContent, ColumnContent("evaluation_time", "number", False)])
82
+ auto_eval_column_dict.append(["system_prompt", ColumnContent, ColumnContent("system_prompt", "str", False)])
83
+
84
+ # We use make dataclass to dynamically fill the scores from Tasks
85
+ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
86
+
87
+
88
+ @dataclass(frozen=True)
89
+ class EvalQueueColumn: # Queue column
90
+ model = ColumnContent("model", "markdown", True)
91
+
92
+
93
+ baseline_row = {
94
+ AutoEvalColumn.model.name: "<p>Baseline</p>",
95
+ AutoEvalColumn.score.name: 0.1,
96
+ AutoEvalColumn.math.name: 0.1,
97
+ AutoEvalColumn.physics.name: 0.1,
98
+ AutoEvalColumn.total_tokens.name: 0,
99
+ AutoEvalColumn.evaluation_time.name: 0,
100
+ AutoEvalColumn.system_prompt.name: "Вы - полезный помощник по математике и физике. Ответьте на русском языке.",
101
+ }
102
+
103
+ # Define the human baselines
104
+ human_baseline_row = {
105
+ AutoEvalColumn.model.name: "<p>Human performance</p>",
106
+ AutoEvalColumn.score.name: 0.9,
107
+ AutoEvalColumn.math.name: 0.9,
108
+ AutoEvalColumn.physics.name: 0.9,
109
+ AutoEvalColumn.total_tokens.name: 0,
110
+ AutoEvalColumn.evaluation_time.name: 0,
111
+ AutoEvalColumn.system_prompt.name: "Вы - полезный помощник по математике и физике. Ответьте на русском языке.",
112
+ }
113
+
114
+
115
+ @dataclass
116
+ class ModelDetails:
117
+ name: str
118
+ symbol: str = "" # emoji, only for the model type
119
+
120
+
121
+ class ModelType(Enum):
122
+ PT = ModelDetails(name="pretrained", symbol="🟢")
123
+ CPT = ModelDetails(name="continuously pretrained", symbol="🟩")
124
+ FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔶")
125
+ chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬")
126
+ merges = ModelDetails(name="base merges and moerges", symbol="🤝")
127
+ Unknown = ModelDetails(name="", symbol="?")
128
+
129
+ def to_str(self, separator=" "):
130
+ return f"{self.value.symbol}{separator}{self.value.name}"
131
+
132
+ @staticmethod
133
+ def from_str(type):
134
+ if "fine-tuned" in type or "🔶" in type:
135
+ return ModelType.FT
136
+ if "continously pretrained" in type or "🟩" in type:
137
+ return ModelType.CPT
138
+ if "pretrained" in type or "🟢" in type:
139
+ return ModelType.PT
140
+ if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "💬"]]):
141
+ return ModelType.chat
142
+ if "merge" in type or "🤝" in type:
143
+ return ModelType.merges
144
+ return ModelType.Unknown
145
+
146
+
147
+ class WeightType(Enum):
148
+ Adapter = ModelDetails("Adapter")
149
+ Original = ModelDetails("Original")
150
+ Delta = ModelDetails("Delta")
151
+
152
+
153
+ class Precision(Enum):
154
+ float16 = ModelDetails("float16")
155
+ bfloat16 = ModelDetails("bfloat16")
156
+ qt_8bit = ModelDetails("8bit")
157
+ qt_4bit = ModelDetails("4bit")
158
+ qt_GPTQ = ModelDetails("GPTQ")
159
+ Unknown = ModelDetails("?")
160
+
161
+ def from_str(precision):
162
+ if precision in ["torch.float16", "float16"]:
163
+ return Precision.float16
164
+ if precision in ["torch.bfloat16", "bfloat16"]:
165
+ return Precision.bfloat16
166
+ if precision in ["8bit"]:
167
+ return Precision.qt_8bit
168
+ if precision in ["4bit"]:
169
+ return Precision.qt_4bit
170
+ if precision in ["GPTQ", "None"]:
171
+ return Precision.qt_GPTQ
172
+ return Precision.Unknown
173
+
174
+
175
+ # Column selection
176
+ COLS = [c.name for c in fields(AutoEvalColumn)]
177
+ TYPES = [c.type for c in fields(AutoEvalColumn)]
178
+
179
+ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
180
+ EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
181
+
182
+ NUMERIC_INTERVALS = {
183
+ "?": pd.Interval(-1, 0, closed="right"),
184
+ "~0.1": pd.Interval(0, 0.2, closed="right"),
185
+ "~0.3": pd.Interval(0.2, 0.4, closed="right"),
186
+ "~0.5": pd.Interval(0.4, 0.6, closed="right"),
187
+ "~0.7": pd.Interval(0.6, 0.8, closed="right"),
188
+ "0.8+": pd.Interval(0.8, 1.0, closed="right"),
189
+ }
src/envs.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from huggingface_hub import HfApi
4
+
5
+ # Токен для доступа к HuggingFace Hub
6
+ H4_TOKEN = os.environ.get("H4_TOKEN", None)
7
+
8
+ # Репозитории для DeathMath
9
+ REPO_ID = "Vikhrmodels/DeathMath-leaderboard"
10
+ RESULTS_REPO = "Vikhrmodels/DeathMath-leaderboard-data"
11
+ METAINFO_REPO = "Vikhrmodels/DeathMath-leaderboard-metainfo"
12
+
13
+ # Путь к данным локально
14
+ HF_HOME = os.getenv("HF_HOME", ".")
15
+ print(f"Initial HF_HOME set to: {HF_HOME}")
16
+
17
+ # Проверка прав доступа к директории
18
+ if not os.access(HF_HOME, os.W_OK):
19
+ print(f"No write access to HF_HOME: {HF_HOME}. Resetting to current directory.")
20
+ HF_HOME = "."
21
+ os.environ["HF_HOME"] = HF_HOME
22
+ else:
23
+ print("Write access confirmed for HF_HOME")
24
+
25
+ DATA_PATH = os.path.join(HF_HOME, "data")
26
+
27
+ # Переменная для обновления лидерборда
28
+ RESET_JUDGEMENT_ENV = "RESET_JUDGEMENT"
29
+
30
+ # API HuggingFace
31
+ API = HfApi(token=H4_TOKEN)
src/gen/config/api_config.yaml ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # name: str
2
+ # model_name: str
3
+ # endpoints: default to null
4
+ # - api_base: str
5
+ # api_key: str optional (required if no api_key_ENV)
6
+ # api_key_ENV: str optional (ENV name to store the token secret)
7
+ # api_version: str optional (only for azure)
8
+ # api_type: str
9
+ # tokenizer: str optional (to optimize token limits)
10
+ # parallel: int
11
+
12
+ gpt-4-1106-preview:
13
+ model_name: gpt-4-1106-preview
14
+ endpoints:
15
+ - api_base: https://cgiaura-openai-trainning.openai.azure.com
16
+ api_key_ENV: GPT_4_TOKEN
17
+ api_version: 2024-02-15-preview
18
+ api_type: azure
19
+ parallel: 5
20
+
21
+ gpt-3.5-turbo-0125:
22
+ model_name: gpt-3.5-turbo-0125
23
+ endpoints:
24
+ - api_base: https://api.openai.com/v1/
25
+ api_key_ENV: GPT_3_TOKEN
26
+ api_type: openai
27
+ parallel: 6
28
+
29
+ gpt-3.5-turbo-0125-ru-sys:
30
+ model_name: gpt-3.5-turbo-0125
31
+ endpoints:
32
+ - api_base: https://api.openai.com/v1/
33
+ api_key_ENV: GPT_3_TOKEN
34
+ system_prompt: You are a helpful assistant. Answer on Russian.
35
+ api_type: openai
36
+ parallel: 6
37
+
38
+ yandex_gpt_pro:
39
+ model_name: yandexgpt
40
+ endpoints:
41
+ - catalog_id: b1gk1i41eeb97a5s68c7
42
+ iam_token_ENV: YANDEX_GPT_TOKEN
43
+ api_type: yandex
44
+ parallel: 2
45
+
46
+ gigachat_lite:
47
+ model_name: GigaChat
48
+ endpoints:
49
+ auth_token_ENV: GIGACHAT_GPT_TOKEN
50
+ api_type: gigachat
51
+ parallel: 1
52
+
53
+ gigachat_pro:
54
+ model_name: GigaChat-Pro
55
+ endpoints:
56
+ auth_token_ENV: GIGACHAT_GPT_TOKEN
57
+ api_type: gigachat
58
+ parallel: 1
59
+
60
+ meta-llama-3-70b-instruct-gptq:
61
+ model_name: MaziyarPanahi/Meta-Llama-3-70B-Instruct-GPTQ
62
+ endpoints:
63
+ - api_base: http://localhost:8000/v1
64
+ api_key: token-abc123
65
+ api_type: openai
66
+ parallel: 6
67
+
68
+ snorkel-mistral-pairrm-dpo:
69
+ model_name: snorkelai/Snorkel-Mistral-PairRM-DPO
70
+ endpoints:
71
+ - api_base: http://localhost:8000/v1
72
+ api_key: token-abc123
73
+ api_type: openai
74
+ parallel: 6
75
+
76
+ sfr-iterative-dpo-llama-3-8b-r:
77
+ model_name: Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R
78
+ endpoints:
79
+ - api_base: http://localhost:8000/v1
80
+ api_key: token-abc123
81
+ api_type: openai
82
+ parallel: 6
83
+
84
+ openchat-3.5-0106:
85
+ model_name: openchat/openchat-3.5-0106
86
+ endpoints:
87
+ - api_base: http://localhost:8000/v1
88
+ api_key: token-abc123
89
+ api_type: openai
90
+ parallel: 6
91
+
92
+ mixtral-8x7b-instruct-v0.1:
93
+ model_name: LoneStriker/Mixtral-8x7B-Instruct-v0.1-HF
94
+ endpoints:
95
+ - api_base: http://localhost:8000/v1
96
+ api_key: token-abc123
97
+ api_type: openai
98
+ parallel: 4
99
+
100
+ neural-chat-7b-v3-3:
101
+ model_name: Intel/neural-chat-7b-v3-3
102
+ endpoints:
103
+ - api_base: http://localhost:8000/v1
104
+ api_key: token-abc123
105
+ api_type: openai
106
+ parallel: 6
107
+
108
+ meta-llama-3-8b-instruct:
109
+ model_name: meta-llama/Meta-Llama-3-8B-Instruct
110
+ endpoints:
111
+ - api_base: http://localhost:8000/v1
112
+ api_key: token-abc123
113
+ api_type: openai
114
+ parallel: 6
115
+
116
+ saiga_llama3_8b:
117
+ model_name: IlyaGusev/saiga_llama3_8b
118
+ endpoints:
119
+ - api_base: http://localhost:8000/v1
120
+ api_key: token-abc123
121
+ api_type: openai
122
+ parallel: 6
123
+
124
+ hermes-2-pro-llama-3-8b:
125
+ model_name: NousResearch/Hermes-2-Pro-Llama-3-8B
126
+ endpoints:
127
+ - api_base: http://localhost:8000/v1
128
+ api_key: token-abc123
129
+ api_type: openai
130
+ parallel: 6
131
+
132
+ dpopenhermes-7b:
133
+ model_name: openaccess-ai-collective/DPOpenHermes-7B
134
+ endpoints:
135
+ - api_base: http://localhost:8000/v1
136
+ api_key: token-abc123
137
+ api_type: openai
138
+ parallel: 6
139
+
140
+ llama3-chatqa-1.5-8b:
141
+ model_name: nvidia/Llama3-ChatQA-1.5-8B
142
+ endpoints:
143
+ - api_base: http://localhost:8000/v1
144
+ api_key: token-abc123
145
+ api_type: openai
146
+ parallel: 6
147
+
148
+ hermes-2-pro-mistral-7b:
149
+ model_name: NousResearch/Hermes-2-Pro-Mistral-7B
150
+ endpoints:
151
+ - api_base: http://localhost:8000/v1
152
+ api_key: token-abc123
153
+ api_type: openai
154
+ parallel: 6
155
+
156
+ suzume-llama-3-8b-multilingual:
157
+ model_name: lightblue/suzume-llama-3-8B-multilingual
158
+ endpoints:
159
+ - api_base: http://localhost:8000/v1
160
+ api_key: token-abc123
161
+ api_type: openai
162
+ parallel: 6
163
+
164
+ vikhr-7b-instruct_0.4:
165
+ model_name: Vikhrmodels/Vikhr-7B-instruct_0.4
166
+ endpoints:
167
+ - api_base: http://localhost:8000/v1
168
+ api_key: token-abc123
169
+ api_type: openai
170
+ parallel: 6
171
+
172
+ vikhr-it-5.2-fp16-cp:
173
+ model_name: Vikhrmodels/it-5.2-fp16-cp
174
+ endpoints:
175
+ - api_base: http://localhost:8000/v1
176
+ api_key: token-abc123
177
+ api_type: openai
178
+ system_prompt: Ты — Вихрь, русскоязычный ассистент.
179
+ parallel: 6
180
+
181
+ starling-lm-7b-beta:
182
+ model_name: Nexusflow/Starling-LM-7B-beta
183
+ endpoints:
184
+ - api_base: http://localhost:8000/v1
185
+ api_key: token-abc123
186
+ api_type: openai
187
+ parallel: 6
188
+
189
+ c4ai-command-r-v01:
190
+ model_name: CohereForAI/c4ai-command-r-v01
191
+ endpoints:
192
+ - api_base: http://localhost:8000/v1
193
+ api_key: token-abc123
194
+ api_type: openai
195
+ parallel: 6
196
+
197
+ starcoder2-15b-instruct-v0.1:
198
+ model_name: bigcode/starcoder2-15b-instruct-v0.1
199
+ endpoints:
200
+ - api_base: http://localhost:8000/v1
201
+ api_key: token-abc123
202
+ api_type: openai
203
+ parallel: 3
src/gen/config/judge_config-ru.yaml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: judgment config file for Arena Hard
2
+
3
+ bench_name: arena-hard-v0.1
4
+
5
+ # Arena Hard default
6
+ judge_model: gpt-4-1106-preview
7
+ reference: False # Optional
8
+ ref_model: null
9
+
10
+ baseline: True
11
+ baseline_model: gpt-3.5-turbo-0125
12
+
13
+ pairwise: True
14
+ temperature: 0
15
+ max_tokens: 4096
16
+
17
+ regex_pattern: \[\[([AB<>=]+)\]\]
18
+
19
+ system_prompt: "Пожалуйста, веди себя как беспристрастный судья и оцени качество ответов, предоставленных двумя AI ассистентами на пользовательский запрос, представленный ниже. Тебе будут даны ответы ассистента А и ассистента В. Твоя задача — оценить, чей ответ лучше.\n\nНачни свою оценку, сгенерировав собственный ответ на запрос. Ты должен предоставить свои ответы, прежде чем судить об ответах других AI.\n\nПри оценке ответов ассистентов сравни ответы обоих ассистентов со своим ответом. Ты должен идентифицировать и исправить любые ошибки или неточности.\n\nЗатем рассмотри, являются ли ответы ассистентов грамотными, полезными, релевантными и краткими. Грамотность означает, что ответ использует преимущественно русский язык и в нем отсутствуют языковые ошибки. Полезность означает, что ответ правильно реагирует на запрос или следует инструкциям. Обрати внимание, когда в запросе пользователя есть какая-либо неоднозначность или более одной интерпретации, полезнее и уместнее запрашивать уточнения или дополнительную информацию у пользователя, чем предоставлять ответ на основе предположений. Релевантность означает, что все части ответа тесно связаны или соотвествуют тому, что спрашивается. Краткость означает, что ответ ясен и не многословен или избыточен.\n\nЗатем рассмотри креативность и новизну ответов ассистентов, когда это необходимо. Наконец, определи любую отсутствующую важную информацию в ответах ассистентов, которую было бы полезно включить при ответе на пользовательский запрос.\n\nПосле предоставления твоего объяснения, ты должен выдать только один из следующих вариантов как твое окончательное решение с меткой:\n\n1. Ассистент A значительно лучше: [[A>>B]]\n2. Ассистент A немного лучше: [[A>B]]\n3. Ничья, примерно одинаково: [[A=B]]\n4. Ассистент B немного лучше: [[B>A]]\n5. Ассистент B значительно лучше: [[B>>A]]\n\nПример вывода: \"Мой окончательный вердикт — ничья: [[A=B]]\"."
20
+
21
+ prompt_template: ["<|Запрос пользователя|>\n{question_1}\n\n<|Начало ответа ассистента A|>\n{answer_1}\n<|Конец ответа ассистента A|>\n\n<|Начало ответа ассистента B|>\n{answer_2}\n<|Конец ответа ассистента B|>"]
22
+
23
+ # Add your model below for evaluation
24
+ model_list:
25
+ - meta-llama-3-8b-instruct
26
+ - meta-llama-3-8b-instruct-ru-guided-2
27
+ - saiga_llama3_8b
28
+ - suzume-llama-3-8B-multilingual
29
+ - c4ai-command-r-v01
30
+ - starling-lm-7b-beta
31
+ - openchat-3.5-0106
32
+ - hermes-2-pro-llama-3-8b
33
+ - hermes-2-pro-mistral-7b
34
+ - starcoder2-15b-instruct-v0.1
35
+ - gpt-4-1106-preview
src/gen/config/judge_config.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: judgment config file for Arena Hard
2
+
3
+ bench_name: arena-hard-v0.1
4
+
5
+ # Arena Hard default
6
+ judge_model: gpt-4-1106-preview
7
+ reference: False # Optional
8
+ ref_model: null
9
+
10
+ baseline: True
11
+ baseline_model: gpt-3.5-turbo-0125
12
+
13
+ pairwise: True
14
+ temperature: 0
15
+ max_tokens: 4096
16
+
17
+ regex_pattern: \[\[([AB<>=]+)\]\]
18
+
19
+ system_prompt: "Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user prompt displayed below. You will be given assistant A's answer and assistant B's answer. Your job is to evaluate which assistant's answer is better.\n\nBegin your evaluation by describing the details that need to be taken into account when responding to this prompt. You must provide your ideas before judging any answers.\n\nWhen evaluating the assistants' answers, compare both assistants' answers with your ideas. You must identify and correct any mistakes or inaccurate information.\n\nThen consider if the assistant's answers are helpful, relevant, concise and linguistically acceptable. Helpful means the answer correctly responds to the prompt or follows the instructions. Note when user prompt has any ambiguity or more than one interpretation, it is more helpful and appropriate to ask for clarifications or more information from the user than providing an answer based on assumptions. Relevant means all parts of the response closely connect or are appropriate to what is being asked. Concise means the response is clear and not verbose or excessive. Linguistically acceptable means that the response is given mainly in Russian language and there are no grammatical errors in it.\n\nThen consider the creativity and novelty of the assistant's answers when needed. Finally, identify any missing important information in the assistants' answers that would be beneficial to include when responding to the user prompt.\n\nAfter providing your explanation, you must output only one of the following choices as your final verdict with a label:\n\n1. Assistant A is significantly better: [[A>>B]]\n2. Assistant A is slightly better: [[A>B]]\n3. Tie, relatively the same: [[A=B]]\n4. Assistant B is slightly better: [[B>A]]\n5. Assistant B is significantly better: [[B>>A]]\n\nExample output: \"My final verdict is tie: [[A=B]]\"."
20
+
21
+ prompt_template: ["<|User Prompt|>\n{question_1}\n\n<|The Start of Assistant A's Answer|>\n{answer_1}\n<|The End of Assistant A's Answer|>\n\n<|The Start of Assistant B's Answer|>\n{answer_2}\n<|The End of Assistant B's Answer|>"]
22
+
23
+ # Add your model below for evaluation
24
+ model_list:
25
+ - meta-llama-3-8b-instruct
26
+ - saiga_llama3_8b
27
+ - suzume-llama-3-8b-multilingual
28
+ - yandex_gpt_pro
29
+ - c4ai-command-r-v01
30
+ - starling-lm-7b-beta
31
+ - openchat-3.5-0106
32
+ - snorkel-mistral-pairrm-dpo
33
+ - neural-chat-7b-v3-3
34
+ - gigachat_lite
35
+ - gigachat_pro
36
+ - vikhr-7b-instruct_0.4
37
+ - hermes-2-pro-llama-3-8b
38
+ - gpt-4-1106-preview
39
+ - llama3-chatqa-1.5-8b
40
+ - vikhr-it-5.1
src/gen/gen_answer.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Generate answers using api endpoints.
2
+
3
+ Usage:
4
+ python gen_api_answer --parallel 32
5
+ """
6
+ import argparse
7
+ import concurrent.futures
8
+ import json
9
+ import os
10
+ import time
11
+
12
+ import shortuuid
13
+ import tiktoken
14
+ import tqdm
15
+ from utils import (
16
+ OPENAI_MODEL_LIST,
17
+ chat_completion_anthropic,
18
+ chat_completion_cohere,
19
+ chat_completion_gemini,
20
+ chat_completion_gigachat,
21
+ chat_completion_mistral,
22
+ chat_completion_openai,
23
+ chat_completion_openai_azure,
24
+ chat_completion_yandex,
25
+ get_endpoint,
26
+ load_model_answers,
27
+ load_questions,
28
+ make_config,
29
+ reorg_answer_file,
30
+ temperature_config,
31
+ )
32
+
33
+
34
+ def get_answer(
35
+ question: dict,
36
+ model: str,
37
+ endpoint_info: dict,
38
+ num_choices: int,
39
+ max_tokens: int,
40
+ temperature: float,
41
+ answer_file: str,
42
+ api_dict: dict,
43
+ ):
44
+ if question["category"] in temperature_config:
45
+ temperature = temperature_config[question["category"]]
46
+
47
+ api_type = endpoint_info["api_type"]
48
+
49
+ conv = []
50
+
51
+ if "system_prompt" in endpoint_info.keys():
52
+ conv.append({"role": "system", "content": endpoint_info["system_prompt"]})
53
+ elif model in OPENAI_MODEL_LIST:
54
+ conv.append({"role": "system", "content": "You are a helpful assistant."})
55
+
56
+ encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
57
+ choices = []
58
+ for i in range(num_choices):
59
+ turns = []
60
+ for j in range(len(question["turns"])):
61
+ conv.append({"role": "user", "content": question["turns"][j]["content"]})
62
+ if api_type == "anthropic":
63
+ output = chat_completion_anthropic(
64
+ model=endpoint_info["model_name"], messages=conv, temperature=temperature, max_tokens=max_tokens
65
+ )
66
+ elif api_type == "mistral":
67
+ output = chat_completion_mistral(
68
+ model=endpoint_info["model_name"], messages=conv, temperature=temperature, max_tokens=max_tokens
69
+ )
70
+ elif api_type == "yandex":
71
+ output = chat_completion_yandex(
72
+ model=endpoint_info["model_name"],
73
+ messages=conv,
74
+ temperature=temperature,
75
+ max_tokens=max_tokens,
76
+ api_dict=api_dict,
77
+ )
78
+ elif api_type == "gigachat":
79
+ output = chat_completion_gigachat(
80
+ model=endpoint_info["model_name"],
81
+ messages=conv,
82
+ temperature=temperature,
83
+ max_tokens=max_tokens,
84
+ api_dict=api_dict,
85
+ )
86
+ elif api_type == "gemini":
87
+ output = chat_completion_gemini(
88
+ model=endpoint_info["model_name"],
89
+ messages=question["turns"][j]["content"],
90
+ temperature=temperature,
91
+ max_tokens=max_tokens,
92
+ )
93
+ elif api_type == "azure":
94
+ output = chat_completion_openai_azure(
95
+ model=endpoint_info["model_name"],
96
+ messages=conv,
97
+ temperature=temperature,
98
+ max_tokens=max_tokens,
99
+ api_dict=api_dict,
100
+ )
101
+ elif api_type == "cohere":
102
+ output = chat_completion_cohere(
103
+ model=endpoint_info["model_name"], messages=conv, temperature=temperature, max_tokens=max_tokens
104
+ )
105
+ else:
106
+ output = chat_completion_openai(
107
+ model=endpoint_info["model_name"],
108
+ messages=conv,
109
+ temperature=temperature,
110
+ max_tokens=max_tokens,
111
+ api_dict=api_dict,
112
+ )
113
+ conv.append({"role": "assistant", "content": output})
114
+
115
+ turns.append({"content": output, "token_len": len(encoding.encode(output))})
116
+ choices.append({"index": i, "turns": turns})
117
+
118
+ # Dump answers
119
+ ans = {
120
+ "question_id": question["question_id"],
121
+ "answer_id": shortuuid.uuid(),
122
+ "model_id": model,
123
+ "choices": choices,
124
+ "tstamp": time.time(),
125
+ }
126
+
127
+ os.makedirs(os.path.dirname(answer_file), exist_ok=True)
128
+ with open(answer_file, "a") as fout:
129
+ fout.write(json.dumps(ans) + "\n")
130
+
131
+
132
+ if __name__ == "__main__":
133
+ parser = argparse.ArgumentParser()
134
+ parser.add_argument("--setting-file", type=str, default="config/gen_answer_config.yaml")
135
+ parser.add_argument("--endpoint-file", type=str, default="config/api_config.yaml")
136
+ args = parser.parse_args()
137
+
138
+ settings = make_config(args.setting_file)
139
+ endpoint_list = make_config(args.endpoint_file)
140
+
141
+ existing_answer = load_model_answers(os.path.join("data", settings["bench_name"], "model_answers", "internal"))
142
+
143
+ print(settings)
144
+
145
+ for model in settings["model_list"]:
146
+ assert model in endpoint_list
147
+ endpoint_info = endpoint_list[model]
148
+
149
+ question_file = os.path.join("data", settings["bench_name"], "question.jsonl")
150
+ questions = load_questions(question_file)
151
+
152
+ answer_file = os.path.join("data", settings["bench_name"], "model_answers", f"{model}.jsonl")
153
+ print(f"Output to {answer_file}")
154
+
155
+ if "parallel" in endpoint_info:
156
+ parallel = endpoint_info["parallel"]
157
+ else:
158
+ parallel = 1
159
+
160
+ # We want to maximizes the number of tokens generate per answer: max_tokens = specified token # - input tokens #
161
+ if "tokenizer" in endpoint_info:
162
+ question_list = [question["turns"][0]["content"] for question in questions]
163
+ if model in OPENAI_MODEL_LIST:
164
+ tokenizer = tiktoken.encoding_for_model(endpoint_info["model_name"])
165
+ tokens = [tokenizer.encode(prompt) for prompt in question_list]
166
+ max_tokens = [(settings["max_tokens"] - len(token) - 100) for token in tokens]
167
+ else:
168
+ from transformers import AutoTokenizer
169
+
170
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
171
+ tokenizer = AutoTokenizer.from_pretrained(endpoint_info["tokenizer"])
172
+
173
+ tokens = tokenizer(question_list)
174
+ max_tokens = [(settings["max_tokens"] - len(prompt) - 300) for prompt in tokens["input_ids"]]
175
+ else:
176
+ max_tokens = [settings["max_tokens"]] * len(questions)
177
+
178
+ with concurrent.futures.ThreadPoolExecutor(max_workers=parallel) as executor:
179
+ futures = []
180
+ count = 0
181
+ for index, question in enumerate(questions):
182
+ if model in existing_answer and question["question_id"] in existing_answer[model]:
183
+ count += 1
184
+ continue
185
+ future = executor.submit(
186
+ get_answer,
187
+ question,
188
+ model,
189
+ endpoint_info,
190
+ settings["num_choices"],
191
+ max_tokens[index],
192
+ settings["temperature"],
193
+ answer_file,
194
+ get_endpoint(endpoint_info["endpoints"]),
195
+ )
196
+ futures.append(future)
197
+ if count > 0:
198
+ print(f"{count} number of existing answers")
199
+ for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
200
+ future.result()
201
+
202
+ reorg_answer_file(answer_file)
src/gen/gen_judgment.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import concurrent.futures
3
+ import glob
4
+ import json
5
+ import os
6
+ import re
7
+
8
+ import huggingface_hub
9
+ from tqdm import tqdm
10
+ from utils import (
11
+ chat_completion_anthropic,
12
+ chat_completion_openai,
13
+ chat_completion_openai_azure,
14
+ get_endpoint,
15
+ load_model_answers,
16
+ load_questions,
17
+ make_config,
18
+ )
19
+
20
+
21
+ def get_score(judgment, pattern, pairwise=True):
22
+ matches = pattern.findall(judgment)
23
+ matches = [m for m in matches if m != ""]
24
+ if len(set(matches)) == 0:
25
+ return None, True
26
+ elif len(set(matches)) == 1:
27
+ if pairwise:
28
+ return matches[0].strip("\n"), False
29
+ return int(matches[0])
30
+ else:
31
+ return None, False
32
+
33
+
34
+ # get answer from model
35
+ def get_answer(model, conv, temperature, max_tokens, endpoint_dict=None):
36
+ api_dict = get_endpoint(endpoint_dict["endpoints"])
37
+
38
+ if endpoint_dict["api_type"] == "anthropic":
39
+ output = chat_completion_anthropic(model, conv, temperature, max_tokens)
40
+ elif endpoint_dict["api_type"] == "azure":
41
+ output = chat_completion_openai_azure(model, conv, temperature, max_tokens, api_dict)
42
+ else:
43
+ output = chat_completion_openai(model, conv, temperature, max_tokens, api_dict)
44
+ return output
45
+
46
+
47
+ def judgment(**args):
48
+ question = args["question"]
49
+ answer = args["answer"]
50
+ reference = args["reference"]
51
+ baseline = args["baseline_answer"]
52
+ configs = args["configs"]
53
+ output_file = args["output_file"]
54
+ model = configs["judge_model"]
55
+
56
+ num_games = 2 if configs["pairwise"] else 1
57
+
58
+ output = {"question_id": question["question_id"], "model": answer["model_id"], "judge": model, "games": []}
59
+
60
+ for game in range(num_games):
61
+ conv = [{"role": "system", "content": configs["system_prompt"]}]
62
+
63
+ for template in configs["prompt_template"]:
64
+ prompt_args = {}
65
+
66
+ for i, turn in enumerate(question["turns"]):
67
+ prompt_args[f"question_{i+1}"] = turn["content"]
68
+ base = 1
69
+
70
+ if baseline:
71
+ if game % 2 == 1: # swap position
72
+ temp = baseline
73
+ baseline = answer
74
+ answer = temp
75
+
76
+ for i, turn in enumerate(baseline["choices"][0]["turns"]):
77
+ prompt_args[f"answer_{i+1}"] = turn["content"]
78
+ base += 1
79
+ if answer:
80
+ for i, turn in enumerate(answer["choices"][0]["turns"]):
81
+ prompt_args[f"answer_{i+base}"] = turn["content"]
82
+
83
+ if reference:
84
+ for j, ref_answer in enumerate(reference):
85
+ for i, turn in enumerate(ref_answer["choices"][0]["turns"]):
86
+ prompt_args[f"ref_answer_{i+j+1}"] = turn["content"]
87
+
88
+ user_prompt = template.format(**prompt_args)
89
+ conv.append({"role": "user", "content": user_prompt})
90
+
91
+ judgment = ""
92
+ for _ in range(2):
93
+ new_judgment = get_answer(
94
+ model,
95
+ conv,
96
+ configs["temperature"],
97
+ configs["max_tokens"],
98
+ args["endpoint_dict"],
99
+ )
100
+
101
+ judgment += "\n" + new_judgment
102
+
103
+ score, try_again = get_score(judgment, args["regex_pattern"])
104
+
105
+ conv.append({"role": "assistant", "content": new_judgment})
106
+
107
+ if not try_again:
108
+ break
109
+
110
+ conv.append(
111
+ {"role": "user", "content": "continue your judgment and finish by outputting a final verdict label"}
112
+ )
113
+
114
+ result = {"user_prompt": conv[1]["content"], "judgment": judgment, "score": score}
115
+ output["games"].append(result)
116
+
117
+ with open(output_file, "a") as f:
118
+ f.write(json.dumps(output, ensure_ascii=False) + "\n")
119
+ huggingface_hub.HfApi().upload_file(
120
+ output_file,
121
+ path_in_repo=f'model_judgment/{configs['judge_model']}/{output_file.split('/')[-1]}',
122
+ repo_id="Vikhrmodels/openbench-eval",
123
+ repo_type="dataset",
124
+ )
125
+
126
+
127
+ if __name__ == "__main__":
128
+ parser = argparse.ArgumentParser()
129
+ parser.add_argument("--setting-file", type=str, default="./config/judge_config.yaml")
130
+ parser.add_argument("--endpoint-file", type=str, default="./config/api_config.yaml")
131
+ args = parser.parse_args()
132
+ print(args)
133
+
134
+ configs = make_config(args.setting_file)
135
+ endpoint_list = make_config(args.endpoint_file)
136
+
137
+ print(
138
+ f'judge model: {configs["judge_model"]}, baseline: {configs["baseline"]}, baseline model: {configs["baseline_model"]}, reference: {configs["reference"]}, '
139
+ + f'reference models: {configs["ref_model"]}, temperature: {configs["temperature"]}, max tokens: {configs["max_tokens"]}, pairwise: {configs["pairwise"]}'
140
+ )
141
+
142
+ if configs["regex_pattern"]:
143
+ pattern = re.compile(configs["regex_pattern"])
144
+
145
+ question_file = os.path.join("./data", configs["bench_name"], "question.jsonl")
146
+ external_dir = os.path.join("./data", configs["bench_name"], "model_answers/external")
147
+ internal_dir = os.path.join("./data", configs["bench_name"], "model_answers/internal")
148
+ ref_answer_dir = os.path.join("data", configs["bench_name"], "reference_answer")
149
+
150
+ questions = load_questions(question_file)
151
+ model_answers_external = load_model_answers(external_dir)
152
+ model_answers_internal = load_model_answers(internal_dir)
153
+
154
+ # internal has priority
155
+ model_answers = {**model_answers_external, **model_answers_internal}
156
+
157
+ # if user choose a set of models, only judge those models
158
+ models = [
159
+ model.split("/")[-1].split(".")[0]
160
+ for model in glob.glob("./data/arena-hard-v0.1/model_answers/external/*.jsonl")
161
+ ]
162
+
163
+ ref_answers = None
164
+ if configs["reference"]:
165
+ ref_answers = load_model_answers(ref_answer_dir)
166
+ ref_answers = [ref_answers[model] for model in configs["ref_model"]]
167
+
168
+ output_files = {}
169
+ output_dir = f"data/{configs['bench_name']}/model_judgment/{configs['judge_model']}"
170
+ for model in models:
171
+ output_files[model] = os.path.join(
172
+ output_dir,
173
+ f"{model}.jsonl",
174
+ )
175
+
176
+ for output_file in output_files.values():
177
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
178
+
179
+ existing_judgments = load_model_answers(output_dir)
180
+
181
+ endpoint_info = endpoint_list[configs["judge_model"]]
182
+
183
+ with concurrent.futures.ThreadPoolExecutor(max_workers=endpoint_info["parallel"]) as executor:
184
+ futures = []
185
+ for model in models:
186
+ count = 0
187
+ for question in questions[:2]:
188
+ question_id = question["question_id"]
189
+
190
+ kwargs = {}
191
+ kwargs["question"] = question
192
+ if model in model_answers and question_id not in model_answers[model]:
193
+ print(f"Warning: {model} answer to {question['question_id']} cannot be found.")
194
+ continue
195
+
196
+ if model in existing_judgments and question_id in existing_judgments[model]:
197
+ count += 1
198
+ continue
199
+
200
+ kwargs["answer"] = model_answers[model][question_id]
201
+ if ref_answers:
202
+ kwargs["reference"] = [ref_answer[question_id] for ref_answer in ref_answers]
203
+ assert len(kwargs["reference"]) == len(configs["ref_model"])
204
+ else:
205
+ kwargs["reference"] = None
206
+ if configs["baseline"]:
207
+ kwargs["baseline_answer"] = model_answers[configs["baseline_model"]][question_id]
208
+ else:
209
+ kwargs["baseline_answer"] = None
210
+ kwargs["configs"] = configs
211
+ kwargs["endpoint_dict"] = endpoint_info
212
+ kwargs["output_file"] = output_files[model]
213
+ kwargs["regex_pattern"] = pattern
214
+ future = executor.submit(judgment, **kwargs)
215
+ futures.append(future)
216
+
217
+ if count > 0:
218
+ print(f"{count} number of existing judgments")
219
+
220
+ for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
221
+ future.result()
src/gen/show_result.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import datetime
3
+ import math
4
+ import os
5
+ from collections import defaultdict
6
+ from glob import glob
7
+
8
+ import numpy as np
9
+ import pandas as pd
10
+ import plotly.express as px
11
+ from sklearn.linear_model import LogisticRegression
12
+ from tqdm import tqdm
13
+ from utils import load_model_answers
14
+
15
+ from src.envs import HF_TOKEN_PRIVATE
16
+
17
+
18
+ def compute_mle_elo(df, SCALE=400, BASE=10, INIT_RATING=1000):
19
+ models = pd.concat([df["model_a"], df["model_b"]]).unique()
20
+ models = pd.Series(np.arange(len(models)), index=models)
21
+
22
+ # duplicate battles
23
+ df = pd.concat([df, df], ignore_index=True)
24
+ p = len(models.index)
25
+ n = df.shape[0]
26
+
27
+ X = np.zeros([n, p])
28
+ X[np.arange(n), models[df["model_a"]]] = +math.log(BASE)
29
+ X[np.arange(n), models[df["model_b"]]] = -math.log(BASE)
30
+
31
+ # one A win => two A win
32
+ Y = np.zeros(n)
33
+ Y[df["winner"] == "model_a"] = 1.0
34
+
35
+ # one tie => one A win + one B win
36
+ # find tie + tie (both bad) index
37
+ tie_idx = (df["winner"] == "tie") | (df["winner"] == "tie (bothbad)")
38
+ tie_idx[len(tie_idx) // 2 :] = False
39
+ Y[tie_idx] = 1.0
40
+
41
+ lr = LogisticRegression(fit_intercept=False, penalty=None, tol=1e-8)
42
+ lr.fit(X, Y)
43
+
44
+ elo_scores = SCALE * lr.coef_[0] + INIT_RATING
45
+
46
+ # set anchor as gpt-3.5-turbo-0125 = 1000
47
+ if "gpt-3.5-turbo-0125" in models.index:
48
+ elo_scores += 1000 - elo_scores[models["gpt-3.5-turbo-0125"]]
49
+ return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)
50
+
51
+
52
+ def get_bootstrap_result(battles, func_compute_elo, num_round):
53
+ rows = []
54
+ for i in tqdm(range(num_round), desc="bootstrap"):
55
+ rows.append(func_compute_elo(battles.sample(frac=1.0, replace=True)))
56
+ df = pd.DataFrame(rows)
57
+ return df[df.median().sort_values(ascending=False).index]
58
+
59
+
60
+ def preety_print_two_ratings(ratings_1, ratings_2, column_names):
61
+ df = (
62
+ pd.DataFrame(
63
+ [[n, ratings_1[n], ratings_2[n]] for n in ratings_1.keys()],
64
+ columns=["Model", column_names[0], column_names[1]],
65
+ )
66
+ .sort_values(column_names[0], ascending=False)
67
+ .reset_index(drop=True)
68
+ )
69
+ df[column_names[0]] = (df[column_names[0]] + 0.5).astype(int)
70
+ df[column_names[1]] = (df[column_names[1]] + 0.5).astype(int)
71
+ df.index = df.index + 1
72
+ return df
73
+
74
+
75
+ def visualize_bootstrap_scores(df, title):
76
+ bars = (
77
+ pd.DataFrame(dict(lower=df.quantile(0.025), rating=df.quantile(0.5), upper=df.quantile(0.975)))
78
+ .reset_index(names="model")
79
+ .sort_values("rating", ascending=False)
80
+ )
81
+ bars["error_y"] = bars["upper"] - bars["rating"]
82
+ bars["error_y_minus"] = bars["rating"] - bars["lower"]
83
+ bars["rating_rounded"] = np.round(bars["rating"], 2)
84
+ fig = px.scatter(
85
+ bars,
86
+ x="model",
87
+ y="rating",
88
+ error_y="error_y",
89
+ error_y_minus="error_y_minus",
90
+ text="rating_rounded",
91
+ title=title,
92
+ )
93
+ fig.update_layout(xaxis_title="Model", yaxis_title="Rating", height=600)
94
+ return fig
95
+
96
+
97
+ def predict_win_rate(elo_ratings, SCALE=400, BASE=10, INIT_RATING=1000):
98
+ names = sorted(list(elo_ratings.keys()))
99
+ wins = defaultdict(lambda: defaultdict(lambda: 0))
100
+ for a in names:
101
+ for b in names:
102
+ ea = 1 / (1 + BASE ** ((elo_ratings[b] - elo_ratings[a]) / SCALE))
103
+ wins[a][b] = ea
104
+ wins[b][a] = 1 - ea
105
+
106
+ data = {a: [wins[a][b] if a != b else np.NAN for b in names] for a in names}
107
+
108
+ df = pd.DataFrame(data, index=names)
109
+ df.index.name = "model_a"
110
+ df.columns.name = "model_b"
111
+ return df.T
112
+
113
+
114
+ def get_win_rate_column(df, column, baseline="gpt-3.5-turbo-0125"):
115
+ to_dict = df[["model", column]].set_index("model").to_dict()[column]
116
+ win_rate_table = predict_win_rate(to_dict)
117
+ return win_rate_table[baseline].fillna(0.5).apply(lambda x: round(x * 100, 2))
118
+
119
+
120
+ def get_battles_from_judgment(judge_name, first_game_only=False, WEIGHT=3):
121
+ arena_hard_battles = pd.DataFrame()
122
+
123
+ print("Turning judgment results into battles...")
124
+
125
+ directory = f"data/arena-hard-v0.1/model_judgement/{judge_name}"
126
+ assert os.path.exists(directory)
127
+ for file in tqdm(glob(f"{directory}/*jsonl")):
128
+ df = pd.read_json(file, lines=True)
129
+
130
+ for _, row in df.iterrows():
131
+ # game 1
132
+ output = {"question_id": row["question_id"], "model_a": "gpt-3.5-turbo-0125", "model_b": row["model"]}
133
+
134
+ game = row["games"][0]
135
+
136
+ weight = 1
137
+ if game["score"] == "A=B":
138
+ output["winner"] = "tie"
139
+ elif game["score"] == "A>B":
140
+ output["winner"] = "model_a"
141
+ elif game["score"] == "A>>B":
142
+ output["winner"] = "model_a"
143
+ weight = WEIGHT
144
+ elif game["score"] == "B>A":
145
+ output["winner"] = "model_b"
146
+ elif game["score"] == "B>>A":
147
+ output["winner"] = "model_b"
148
+ weight = WEIGHT
149
+ else:
150
+ weight = 0
151
+
152
+ if weight:
153
+ arena_hard_battles = pd.concat([arena_hard_battles, pd.DataFrame([output] * weight)])
154
+
155
+ if not first_game_only:
156
+ # game 2
157
+ output = {"question_id": row["question_id"], "model_a": "gpt-3.5-turbo-0125", "model_b": row["model"]}
158
+
159
+ game = row["games"][1]
160
+
161
+ weight = 1
162
+ if game["score"] == "A=B":
163
+ output["winner"] = "tie"
164
+ elif game["score"] == "A>B":
165
+ output["winner"] = "model_b"
166
+ elif game["score"] == "A>>B":
167
+ output["winner"] = "model_b"
168
+ weight = WEIGHT
169
+ elif game["score"] == "B>A":
170
+ output["winner"] = "model_a"
171
+ elif game["score"] == "B>>A":
172
+ output["winner"] = "model_a"
173
+ weight = WEIGHT
174
+ else:
175
+ weight = 0
176
+
177
+ if weight:
178
+ arena_hard_battles = pd.concat([arena_hard_battles, pd.DataFrame([output] * weight)])
179
+ arena_hard_battles.to_json("data/arena_hard_battles.jsonl", lines=True, orient="records")
180
+ return arena_hard_battles
181
+
182
+
183
+ if __name__ == "__main__":
184
+ parser = argparse.ArgumentParser()
185
+ parser.add_argument("--bench-name", type=str, default="arena-hard-v0.1")
186
+ parser.add_argument("--judge-name", type=str, default="gpt-4-1106-preview")
187
+ parser.add_argument("--baseline", type=str, default="gpt-3.5-turbo-0125")
188
+ parser.add_argument("--load-battles", action="store_true")
189
+ parser.add_argument("--load-bootstrap", action="store_true")
190
+ parser.add_argument("--show-elo", action="store_true")
191
+ parser.add_argument("--weight", type=int, default=3)
192
+ parser.add_argument("--num-rounds", type=int, default=100)
193
+ parser.add_argument("--output", action="store_true")
194
+ parser.add_argument("--first-game-only", action="store_true")
195
+ args = parser.parse_args()
196
+ print(args)
197
+ assert not args.load_bootstrap or (
198
+ args.load_battles and args.load_bootstrap
199
+ ), "If loading prexisting bootstrapping data, you must also load preexisting battles."
200
+
201
+ answer_dir = os.path.join("data", args.bench_name, "model_answers/external")
202
+ model_answers = load_model_answers(answer_dir)
203
+
204
+ if args.load_battles:
205
+ assert os.path.exists("data/arena_hard_battles.jsonl")
206
+ battles = pd.read_json("data/arena_hard_battles.jsonl", lines=True)
207
+ else:
208
+ battles = get_battles_from_judgment(args.judge_name, args.first_game_only, args.weight)
209
+
210
+ bootstrap_online_elo = compute_mle_elo(battles)
211
+
212
+ if args.load_bootstrap:
213
+ bootstrap_elo_lu = pd.read_json("data/bootstrapping_results.jsonl", lines=True)
214
+ else:
215
+ np.random.seed(42)
216
+ bootstrap_elo_lu = get_bootstrap_result(battles, compute_mle_elo, args.num_rounds)
217
+ bootstrap_elo_lu.to_json("data/bootstrapping_results.jsonl", lines=True, orient="records")
218
+
219
+ stats = pd.DataFrame()
220
+ stats["results"] = None
221
+ stats["results"] = stats["results"].astype("object")
222
+
223
+ for i, model in enumerate(bootstrap_online_elo.index):
224
+ assert model in bootstrap_elo_lu.columns
225
+
226
+ stats.at[i, "model"] = model
227
+ stats.at[i, "score"] = bootstrap_online_elo[model]
228
+ stats.at[i, "lower"] = np.percentile(bootstrap_elo_lu[model], 2.5)
229
+ stats.at[i, "upper"] = np.percentile(bootstrap_elo_lu[model], 97.5)
230
+
231
+ length = 0
232
+ if model in model_answers:
233
+ for _, row in model_answers[model].items():
234
+ turn = row["choices"][0]["turns"][0]
235
+ length += turn["token_len"]
236
+ length /= len(model_answers[model])
237
+
238
+ stats.at[i, "avg_tokens"] = int(length)
239
+ stats.at[i, "results"] = bootstrap_elo_lu[model].tolist()
240
+
241
+ if not args.show_elo:
242
+ stats.sort_values(by="model", inplace=True)
243
+ stats["score"] = get_win_rate_column(stats, "score", args.baseline).tolist()
244
+ stats["lower"] = get_win_rate_column(stats, "lower", args.baseline).tolist()
245
+ stats["upper"] = get_win_rate_column(stats, "upper", args.baseline).tolist()
246
+ decimal = 1
247
+ else:
248
+ decimal = 0
249
+ stats = stats.astype({"score": int, "lower": int, "upper": int})
250
+
251
+ stats.sort_values(by="score", ascending=False, inplace=True)
252
+ for _, row in stats.iterrows():
253
+ interval = str((round(row["lower"] - row["score"], decimal), round(row["upper"] - row["score"], decimal)))
254
+ print(
255
+ f"{row['model'] : <30} | score: {round(row['score'], decimal) : ^5} | 95% CI: {interval : ^12} | average #tokens: {int(row['avg_tokens'])}"
256
+ )
257
+
258
+ if args.output:
259
+ cur_date = datetime.datetime.now()
260
+ date_str = cur_date.strftime("%Y%m%d")
261
+ json_file_name = f"arena_hard_leaderboard_{date_str}.json"
262
+ stats.to_json(json_file_name, orient="records", indent=4)
263
+ import huggingface_hub
264
+
265
+ huggingface_hub.HfApi().upload_file(
266
+ path_or_fileobj=json_file_name,
267
+ path_in_repo="leaderboard.json",
268
+ repo_id="Vikhrmodels/arena-leaderboard-metainfo",
269
+ repo_type="dataset",
270
+ token=HF_TOKEN_PRIVATE,
271
+ )
272
+
273
+ huggingface_hub.HfApi().upload_file(
274
+ path_or_fileobj=json_file_name,
275
+ path_in_repo=f"leaderboard_logs/{json_file_name}",
276
+ repo_id="Vikhrmodels/arena-leaderboard-metainfo",
277
+ repo_type="dataset",
278
+ token=HF_TOKEN_PRIVATE,
279
+ )
src/gen/utils.py ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import random
4
+ import time
5
+ from glob import glob
6
+
7
+ import yaml
8
+
9
+ # API setting constants
10
+ API_MAX_RETRY = 16
11
+ API_RETRY_SLEEP = 10
12
+ API_ERROR_OUTPUT = "$ERROR$"
13
+
14
+
15
+ OPENAI_MODEL_LIST = (
16
+ "gpt-3.5-turbo",
17
+ "gpt-3.5-turbo-0301",
18
+ "gpt-3.5-turbo-0613",
19
+ "gpt-3.5-turbo-0613-verbose",
20
+ "gpt-3.5-turbo-1106",
21
+ "gpt-3.5-turbo-0125",
22
+ "gpt-4",
23
+ "gpt-4-0314",
24
+ "gpt-4-0613",
25
+ "gpt-4-turbo",
26
+ "gpt-4-1106-preview",
27
+ "gpt-4-0125-preview",
28
+ )
29
+
30
+
31
+ temperature_config = {
32
+ "writing": 0.7,
33
+ "roleplay": 0.7,
34
+ "extraction": 0.0,
35
+ "math": 0.0,
36
+ "coding": 0.0,
37
+ "reasoning": 0.0,
38
+ "stem": 0.1,
39
+ "humanities": 0.1,
40
+ }
41
+
42
+
43
+ def load_questions(question_file: str):
44
+ """Load questions from a file."""
45
+ questions = []
46
+ with open(question_file, "r") as ques_file:
47
+ for line in ques_file:
48
+ if line:
49
+ questions.append(json.loads(line))
50
+ return questions
51
+
52
+
53
+ def load_model_answers(answer_dir: str):
54
+ """Load model answers.
55
+
56
+ The return value is a python dict of type:
57
+ Dict[model_name: str -> Dict[question_id: int -> answer: dict]]
58
+ """
59
+ filenames = glob(os.path.join(answer_dir, "*.jsonl"))
60
+ filenames.sort()
61
+ model_answers = {}
62
+
63
+ for filename in filenames:
64
+ model_name = os.path.basename(filename)[:-6]
65
+ answer = {}
66
+ with open(filename) as fin:
67
+ for line in fin:
68
+ line = json.loads(line)
69
+ answer[line["question_id"]] = line
70
+ model_answers[model_name] = answer
71
+
72
+ return model_answers
73
+
74
+
75
+ def get_endpoint(endpoint_list):
76
+ if endpoint_list is None:
77
+ return None
78
+ assert endpoint_list is not None
79
+ # randomly pick one
80
+ api_dict = random.choices(endpoint_list)[0]
81
+ return api_dict
82
+
83
+
84
+ # load config args from config yaml files
85
+ def make_config(config_file: str) -> dict:
86
+ config_kwargs = {}
87
+ with open(config_file, "r") as f:
88
+ config_kwargs = yaml.load(f, Loader=yaml.SafeLoader)
89
+
90
+ return config_kwargs
91
+
92
+
93
+ def chat_completion_gigachat(model, messages, temperature, max_tokens, api_dict=None):
94
+ from gigachat import GigaChat
95
+ from gigachat.models import Chat, Messages
96
+
97
+ assert api_dict is not None, "no api settings provided!"
98
+ auth_token = api_dict.get("auth_token", os.environ.get(api_dict["auth_token"], ""))
99
+ client = GigaChat(credentials=auth_token, model=model, verify_ssl_certs=False)
100
+ temperature = max(temperature, 0.001)
101
+
102
+ messages = [Messages.parse_obj(m) for m in messages]
103
+ chat = Chat(messages=messages, max_tokens=max_tokens, temperature=temperature)
104
+
105
+ output = API_ERROR_OUTPUT
106
+ for _ in range(API_MAX_RETRY):
107
+ try:
108
+ output = client.chat(chat)
109
+ output = output.choices[0].message.content
110
+ break
111
+ # Don't know other errors
112
+ except Exception as e:
113
+ print(type(e), e)
114
+ time.sleep(API_RETRY_SLEEP)
115
+
116
+ return output
117
+
118
+
119
+ def chat_completion_yandex(model, messages, temperature, max_tokens, api_dict=None):
120
+ from yandex_gpt import YandexGPT, YandexGPTConfigManagerForIAMToken
121
+
122
+ assert api_dict is not None, "no api settings provided!"
123
+ iam_token = api_dict.get("iam_token", os.environ.get(api_dict["iam_token_ENV"], ""))
124
+ config = YandexGPTConfigManagerForIAMToken(model_type=model, catalog_id=api_dict["catalog_id"], iam_token=iam_token)
125
+ client = YandexGPT(config_manager=config)
126
+
127
+ messages = [{"role": m["role"], "text": m["content"]} for m in messages]
128
+
129
+ output = API_ERROR_OUTPUT
130
+ for _ in range(API_MAX_RETRY):
131
+ try:
132
+ output = client.get_sync_completion(
133
+ messages=messages,
134
+ temperature=temperature,
135
+ max_tokens=max_tokens,
136
+ )
137
+ break
138
+ # Don't know other errors
139
+ except Exception as e:
140
+ print(type(e), e)
141
+ time.sleep(API_RETRY_SLEEP)
142
+
143
+ return output
144
+
145
+
146
+ def chat_completion_openai(model, messages, temperature, max_tokens, api_dict=None):
147
+ import openai
148
+
149
+ api_key = api_dict.get("api_key", os.environ.get(api_dict["api_key_ENV"], ""))
150
+ if api_dict:
151
+ client = openai.OpenAI(
152
+ base_url=api_dict["api_base"],
153
+ api_key=api_key,
154
+ )
155
+ else:
156
+ client = openai.OpenAI()
157
+
158
+ output = API_ERROR_OUTPUT
159
+ for _ in range(API_MAX_RETRY):
160
+ try:
161
+ # print(messages)
162
+ completion = client.chat.completions.create(
163
+ model=model,
164
+ messages=messages,
165
+ temperature=temperature,
166
+ max_tokens=max_tokens,
167
+ stop=["</s>", "<eos>", "<|eot_id|>"],
168
+ )
169
+ output = completion.choices[0].message.content
170
+ break
171
+ except openai.RateLimitError as e:
172
+ print(type(e), e)
173
+ time.sleep(API_RETRY_SLEEP)
174
+ except openai.BadRequestError as e:
175
+ print(messages)
176
+ print(type(e), e)
177
+ except KeyError as e:
178
+ print(type(e), e)
179
+ break
180
+
181
+ return output
182
+
183
+
184
+ def chat_completion_openai_azure(model, messages, temperature, max_tokens, api_dict=None):
185
+ import openai
186
+ from openai import AzureOpenAI
187
+
188
+ api_base = api_dict["api_base"]
189
+ api_key = api_dict.get("api_key", os.environ.get(api_dict["api_key_ENV"], ""))
190
+ client = AzureOpenAI(
191
+ azure_endpoint=api_base, api_key=api_key, api_version=api_dict["api_version"], timeout=240, max_retries=2
192
+ )
193
+
194
+ output = API_ERROR_OUTPUT
195
+ for _ in range(API_MAX_RETRY):
196
+ try:
197
+ response = client.chat.completions.create(
198
+ model=model,
199
+ messages=messages,
200
+ n=1,
201
+ temperature=temperature,
202
+ max_tokens=max_tokens,
203
+ seed=42,
204
+ )
205
+ output = response.choices[0].message.content
206
+ break
207
+ except openai.RateLimitError as e:
208
+ print(type(e), e)
209
+ time.sleep(API_RETRY_SLEEP)
210
+ except openai.BadRequestError as e:
211
+ print(type(e), e)
212
+ break
213
+ except KeyError as e:
214
+ print(type(e), e)
215
+ break
216
+
217
+ return output
218
+
219
+
220
+ def chat_completion_anthropic(model, messages, temperature, max_tokens, api_dict=None):
221
+ import anthropic
222
+
223
+ if api_dict:
224
+ api_key = api_dict.get("api_key", os.environ.get(api_dict["api_key_ENV"], ""))
225
+ else:
226
+ api_key = os.environ["ANTHROPIC_API_KEY"]
227
+
228
+ sys_msg = ""
229
+ if messages[0]["role"] == "system":
230
+ sys_msg = messages[0]["content"]
231
+ messages = messages[1:]
232
+
233
+ output = API_ERROR_OUTPUT
234
+ for _ in range(API_MAX_RETRY):
235
+ try:
236
+ # print(sys_msg)
237
+ c = anthropic.Anthropic(api_key=api_key)
238
+ response = c.messages.create(
239
+ model=model,
240
+ messages=messages,
241
+ stop_sequences=[anthropic.HUMAN_PROMPT],
242
+ max_tokens=max_tokens,
243
+ temperature=temperature,
244
+ system=sys_msg,
245
+ )
246
+ output = response.content[0].text
247
+ break
248
+ except anthropic.APIError as e:
249
+ print(type(e), e)
250
+ time.sleep(API_RETRY_SLEEP)
251
+ return output
252
+
253
+
254
+ def chat_completion_mistral(model, messages, temperature, max_tokens):
255
+ from mistralai.client import MistralClient
256
+ from mistralai.exceptions import MistralException
257
+ from mistralai.models.chat_completion import ChatMessage
258
+
259
+ api_key = os.environ["MISTRAL_API_KEY"]
260
+ client = MistralClient(api_key=api_key)
261
+
262
+ prompts = [ChatMessage(role=message["role"], content=message["content"]) for message in messages]
263
+
264
+ output = API_ERROR_OUTPUT
265
+ for _ in range(API_MAX_RETRY):
266
+ try:
267
+ chat_response = client.chat(
268
+ model=model,
269
+ messages=prompts,
270
+ temperature=temperature,
271
+ max_tokens=max_tokens,
272
+ )
273
+ output = chat_response.choices[0].message.content
274
+ break
275
+ except MistralException as e:
276
+ print(type(e), e)
277
+ break
278
+
279
+ return output
280
+
281
+
282
+ def chat_completion_gemini(model, messages, temperature, max_tokens):
283
+ import google.generativeai as genai
284
+
285
+ genai.configure(api_key=os.environ["GEMINI_API_KEY"])
286
+
287
+ safety_settings = [
288
+ {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
289
+ {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
290
+ {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
291
+ {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
292
+ ]
293
+
294
+ # Set up the model
295
+ generation_config = {
296
+ "temperature": temperature,
297
+ "top_p": 1,
298
+ "top_k": 1,
299
+ "max_output_tokens": max_tokens,
300
+ }
301
+
302
+ output = API_ERROR_OUTPUT
303
+ for _ in range(API_MAX_RETRY):
304
+ try:
305
+ gemini = genai.GenerativeModel(
306
+ model_name=model, generation_config=generation_config, safety_settings=safety_settings
307
+ )
308
+
309
+ convo = gemini.start_chat(history=[])
310
+
311
+ convo.send_message(messages)
312
+ output = convo.last.text
313
+ break
314
+ except genai.types.generation_types.StopCandidateException as e:
315
+ print(type(e), e)
316
+ break
317
+ except Exception as e:
318
+ print(type(e), e)
319
+ time.sleep(API_RETRY_SLEEP)
320
+
321
+ return output
322
+
323
+
324
+ def chat_completion_cohere(model, messages, temperature, max_tokens):
325
+ import cohere
326
+
327
+ co = cohere.Client(os.environ["COHERE_API_KEY"])
328
+ assert len(messages) > 0
329
+
330
+ template_map = {"system": "SYSTEM", "assistant": "CHATBOT", "user": "USER"}
331
+
332
+ assert messages[-1]["role"] == "user"
333
+ prompt = messages[-1]["content"]
334
+
335
+ if len(messages) > 1:
336
+ history = []
337
+ for message in messages[:-1]:
338
+ history.append({"role": template_map[message["role"]], "message": message["content"]})
339
+ else:
340
+ history = None
341
+
342
+ output = API_ERROR_OUTPUT
343
+ for _ in range(API_MAX_RETRY):
344
+ try:
345
+ response = co.chat(
346
+ message=prompt,
347
+ model=model,
348
+ temperature=temperature,
349
+ max_tokens=max_tokens,
350
+ chat_history=history,
351
+ )
352
+ output = response.text
353
+ break
354
+ except cohere.core.api_error.ApiError as e:
355
+ print(type(e), e)
356
+ raise
357
+ except Exception as e:
358
+ print(type(e), e)
359
+ break
360
+
361
+ return output
362
+
363
+
364
+ def reorg_answer_file(answer_file):
365
+ """Sort by question id and de-duplication"""
366
+ answers = {}
367
+ with open(answer_file, "r") as fin:
368
+ for line in fin:
369
+ qid = json.loads(line)["question_id"]
370
+ answers[qid] = line
371
+
372
+ qids = sorted(list(answers.keys()))
373
+ with open(answer_file, "w") as fout:
374
+ for qid in qids:
375
+ fout.write(answers[qid])
src/leaderboard/build_leaderboard.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+ import time
5
+
6
+ import pandas as pd
7
+ from huggingface_hub import snapshot_download
8
+
9
+ from src.envs import DATA_PATH, H4_TOKEN, RESULTS_REPO, METAINFO_REPO
10
+
11
+ # Configure logging
12
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
13
+
14
+
15
+ def time_diff_wrapper(func):
16
+ def wrapper(*args, **kwargs):
17
+ start_time = time.time()
18
+ result = func(*args, **kwargs)
19
+ end_time = time.time()
20
+ diff = end_time - start_time
21
+ logging.info("Time taken for %s: %s seconds", func.__name__, diff)
22
+ return result
23
+
24
+ return wrapper
25
+
26
+ def chmod_recursive(path, mode):
27
+ os.chmod(path, mode)
28
+ for root, dirs, files in os.walk(path):
29
+ for dir in dirs:
30
+ os.chmod(os.path.join(root, dir), mode)
31
+ for file in files:
32
+ os.chmod(os.path.join(root, file), mode)
33
+
34
+ @time_diff_wrapper
35
+ def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
36
+ """Download dataset with exponential backoff retries."""
37
+ os.makedirs(local_dir, exist_ok=True)
38
+ os.makedirs('./tmp', exist_ok=True)
39
+ attempt = 0
40
+ while attempt < max_attempts:
41
+ try:
42
+ logging.info("Downloading %s to %s", repo_id, local_dir)
43
+ snapshot_download(
44
+ repo_id=repo_id,
45
+ local_dir=local_dir,
46
+ cache_dir='./tmp',
47
+ repo_type=repo_type,
48
+ tqdm_class=None,
49
+ token=H4_TOKEN,
50
+ etag_timeout=30,
51
+ max_workers=8,
52
+ force_download=True,
53
+ local_dir_use_symlinks=False
54
+ )
55
+ logging.info("Download successful")
56
+ return
57
+ except Exception as e:
58
+ wait_time = backoff_factor**attempt
59
+ logging.error("Error downloading %s: %s, retrying in %ss", repo_id, e, wait_time)
60
+ time.sleep(wait_time)
61
+ attempt += 1
62
+ logging.error("Failed to download %s after %s attempts", repo_id, max_attempts)
63
+
64
+
65
+ def download_openbench():
66
+ # Download previous autogenerated leaderboard files
67
+ try:
68
+ download_dataset(METAINFO_REPO, DATA_PATH)
69
+ logging.info("Successfully downloaded leaderboard metainfo data")
70
+ except Exception as e:
71
+ logging.error(f"Failed to download leaderboard metainfo: {e}")
72
+
73
+ # Download model evaluation results
74
+ try:
75
+ download_dataset(RESULTS_REPO, "m_data")
76
+ logging.info("Successfully downloaded model evaluation results")
77
+ except Exception as e:
78
+ logging.error(f"Failed to download model evaluation results: {e}")
79
+
80
+
81
+ def build_leadearboard_df():
82
+ results = []
83
+
84
+ # Загружаем базовые модели из локального файла
85
+ try:
86
+ with open("d:/python_projects/DeathMath/results/leaderboard_results.json", "r", encoding="utf-8") as f:
87
+ data = json.load(f)
88
+
89
+ # Извлекаем только комбинированные результаты
90
+ for key, value in data.items():
91
+ if "_Combined_" in key:
92
+ result = {
93
+ "model": value["model_name"],
94
+ "score": value["score"],
95
+ "math_score": value["math_score"],
96
+ "physics_score": value["physics_score"],
97
+ "total_tokens": value["total_tokens"],
98
+ "evaluation_time": value["evaluation_time"],
99
+ "system_prompt": value["system_prompt"]
100
+ }
101
+ results.append(result)
102
+ logging.info(f"Loaded {len(results)} models from local results file")
103
+ except Exception as e:
104
+ logging.error(f"Failed to load local model results: {e}")
105
+
106
+ # Попытка загрузить сохраненные данные лидерборда
107
+ try:
108
+ leaderboard_path = f"{os.path.abspath(DATA_PATH)}/leaderboard.json"
109
+ if os.path.exists(leaderboard_path):
110
+ with open(leaderboard_path, "r", encoding="utf-8") as eval_file:
111
+ saved_data = json.load(eval_file)
112
+ logging.info(f"Loaded {len(saved_data)} models from saved leaderboard data")
113
+
114
+ # Добавляем модели, которых ещё нет в результатах
115
+ existing_models = [r["model"] for r in results]
116
+ for item in saved_data:
117
+ if item["model"] not in existing_models:
118
+ results.append(item)
119
+ except Exception as e:
120
+ logging.error(f"Failed to load saved leaderboard data: {e}")
121
+
122
+ # Загружаем модели из директории внешних моделей
123
+ try:
124
+ for file in os.listdir("./m_data/model_data/external/"):
125
+ if file.endswith(".json"):
126
+ with open(os.path.join("./m_data/model_data/external/", file), "r") as f:
127
+ try:
128
+ data = json.load(f)
129
+ # Проверяем, нет ли уже этой модели в результатах
130
+ if data["model_name"] not in [r["model"] for r in results]:
131
+ result = {
132
+ "model": data["model_name"],
133
+ "score": data["score"],
134
+ "math_score": data["math_score"],
135
+ "physics_score": data["physics_score"],
136
+ "total_tokens": data["total_tokens"],
137
+ "evaluation_time": data["evaluation_time"],
138
+ "system_prompt": data.get("system_prompt", "Вы - полезный помощник по математике и физике. Ответьте на русском языке.")
139
+ }
140
+ results.append(result)
141
+ except Exception as e:
142
+ logging.error(f"Failed to parse {file}: {e}")
143
+ except Exception as e:
144
+ logging.error(f"Failed to process external model data: {e}")
145
+
146
+ # Создаем DataFrame и сортируем по общему баллу
147
+ if results:
148
+ df = pd.DataFrame(results)
149
+ df.sort_values(by='score', ascending=False, inplace=True)
150
+
151
+ # Округляем числовые столбцы для красивого отображения
152
+ numeric_cols = df.select_dtypes(include=['number']).columns
153
+ df[numeric_cols] = df[numeric_cols].round(3)
154
+
155
+ return df
156
+ else:
157
+ # Если нет результатов, возвращаем пустой DataFrame с нужными столбцами
158
+ return pd.DataFrame(columns=['model', 'score', 'math_score', 'physics_score',
159
+ 'total_tokens', 'evaluation_time', 'system_prompt'])
src/leaderboard/filter_models.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.display.formatting import model_hyperlink
2
+ from src.display.utils import AutoEvalColumn
3
+
4
+
5
+ # Models which have been flagged by users as being problematic for a reason or another
6
+ # (Model name to forum discussion link)
7
+ FLAGGED_MODELS = {
8
+ "merged": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
9
+ "Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
10
+ "deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207",
11
+ "Aspik101/trurl-2-13b-pl-instruct_unload": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/213",
12
+ "Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
13
+ "TigerResearch/tigerbot-7b-sft-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/237",
14
+ "gaodrew/gaodrew-gorgonzola-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/215",
15
+ "AIDC-ai-business/Marcoroni-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
16
+ "AIDC-ai-business/Marcoroni-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
17
+ "AIDC-ai-business/Marcoroni-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
18
+ "fblgit/una-xaberius-34b-v1beta": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/444",
19
+ "jan-hq/trinity-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
20
+ "rwitz2/go-bruins-v2.1.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
21
+ "rwitz2/go-bruins-v2.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
22
+ "GreenNode/GreenNodeLM-v3olet-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
23
+ "GreenNode/GreenNodeLM-7B-v4leo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
24
+ "GreenNode/LeoScorpius-GreenNode-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
25
+ "viethq188/LeoScorpius-7B-Chat-DPO": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
26
+ "GreenNode/GreenNodeLM-7B-v2leo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
27
+ "janai-hq/trinity-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
28
+ "ignos/LeoScorpius-GreenNode-Alpaca-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
29
+ "fblgit/una-cybertron-7b-v3-OMA": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
30
+ "mncai/mistral-7b-dpo-merge-v1.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
31
+ "mncai/mistral-7b-dpo-v6": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
32
+ "Toten5/LeoScorpius-GreenNode-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
33
+ "GreenNode/GreenNodeLM-7B-v1olet": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
34
+ "quantumaikr/quantum-dpo-v0.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
35
+ "quantumaikr/quantum-v0.01": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
36
+ "quantumaikr/quantum-trinity-v0.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
37
+ "mncai/mistral-7b-dpo-v5": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
38
+ "cookinai/BruinHermes": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
39
+ "jan-ai/Pandora-10.7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
40
+ "v1olet/v1olet_marcoroni-go-bruins-merge-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
41
+ "v1olet/v1olet_merged_dpo_7B_v3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
42
+ "rwitz2/pee": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
43
+ "zyh3826 / GML-Mistral-merged-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/503",
44
+ "dillfrescott/trinity-medium": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
45
+ "udkai/Garrulus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/526",
46
+ "dfurman/GarrulusMarcoro-7B-v0.1": "https://huggingface.co/dfurman/GarrulusMarcoro-7B-v0.1/discussions/1",
47
+ "eren23/slerp-test-turdus-beagle": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
48
+ "abideen/NexoNimbus-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
49
+ "alnrg2arg/test2_3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
50
+ "nfaheem/Marcoroni-7b-DPO-Merge": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
51
+ "CultriX/MergeTrix-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
52
+ "liminerity/Blur-7b-v1.21": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
53
+ # Merges not indicated
54
+ "gagan3012/MetaModelv2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
55
+ "gagan3012/MetaModelv3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
56
+ "kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
57
+ "kyujinpy/Sakura-SOLAR-Instruct-DPO-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
58
+ "kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
59
+ "kyujinpy/Sakura-SOLRCA-Instruct-DPO": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
60
+ "fblgit/LUNA-SOLARkrautLM-Instruct": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
61
+ "perlthoughts/Marcoroni-8x7B-v3-MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
62
+ "rwitz/go-bruins-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
63
+ "rwitz/go-bruins": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
64
+ "Walmart-the-bag/Solar-10.7B-Cato": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
65
+ "aqweteddy/mistral_tv-neural-marconroni": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
66
+ "NExtNewChattingAI/shark_tank_ai_7_b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
67
+ "Q-bert/MetaMath-Cybertron": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
68
+ "OpenPipe/mistral-ft-optimized-1227": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
69
+ "perlthoughts/Falkor-7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
70
+ "v1olet/v1olet_merged_dpo_7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
71
+ "Ba2han/BruinsV2-OpHermesNeu-11B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
72
+ "DopeorNope/You_can_cry_Snowman-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
73
+ "PistachioAlt/Synatra-MCS-7B-v0.3-RP-Slerp": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
74
+ "Weyaxi/MetaMath-una-cybertron-v2-bf16-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
75
+ "Weyaxi/OpenHermes-2.5-neural-chat-7b-v3-2-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
76
+ "perlthoughts/Falkor-8x7B-MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
77
+ "elinas/chronos007-70b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
78
+ "Weyaxi/MetaMath-NeuralHermes-2.5-Mistral-7B-Linear": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
79
+ "Weyaxi/MetaMath-neural-chat-7b-v3-2-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
80
+ "diffnamehard/Mistral-CatMacaroni-slerp-uncensored-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
81
+ "Weyaxi/neural-chat-7b-v3-1-OpenHermes-2.5-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
82
+ "Weyaxi/MetaMath-NeuralHermes-2.5-Mistral-7B-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
83
+ "Walmart-the-bag/Misted-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
84
+ "garage-bAInd/Camel-Platypus2-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
85
+ "Weyaxi/OpenOrca-Zephyr-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
86
+ "uukuguy/speechless-mistral-7b-dare-0.85": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
87
+ "DopeorNope/SOLARC-M-10.7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
88
+ "cloudyu/Mixtral_11Bx2_MoE_19B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
89
+ "DopeorNope/SOLARC-MOE-10.7Bx6 ": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
90
+ "DopeorNope/SOLARC-MOE-10.7Bx4": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
91
+ "gagan3012/MetaModelv2 ": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
92
+ "udkai/Turdus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
93
+ "kodonho/Solar-OrcaDPO-Solar-Instruct-SLERP": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
94
+ "kodonho/SolarM-SakuraSolar-SLERP": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
95
+ "Yhyu13/LMCocktail-10.7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
96
+ "mlabonne/NeuralMarcoro14-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
97
+ "Neuronovo/neuronovo-7B-v0.2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
98
+ "ryandt/MusingCaterpillar": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
99
+ "Neuronovo/neuronovo-7B-v0.3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
100
+ "SanjiWatsuki/Lelantos-DPO-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
101
+ "bardsai/jaskier-7b-dpo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
102
+ "cookinai/OpenCM-14": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
103
+ "bardsai/jaskier-7b-dpo-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
104
+ "jan-hq/supermario-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
105
+ # MoErges
106
+ "cloudyu/Yi-34Bx2-MoE-60B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
107
+ "cloudyu/Mixtral_34Bx2_MoE_60B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
108
+ "gagan3012/MetaModel_moe": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
109
+ "macadeliccc/SOLAR-math-2x10.7b-v0.2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
110
+ "cloudyu/Mixtral_7Bx2_MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
111
+ "macadeliccc/SOLAR-math-2x10.7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
112
+ "macadeliccc/Orca-SOLAR-4x10.7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
113
+ "macadeliccc/piccolo-8x7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
114
+ "cloudyu/Mixtral_7Bx4_MOE_24B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
115
+ "macadeliccc/laser-dolphin-mixtral-2x7b-dpo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
116
+ "macadeliccc/polyglot-math-4x7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
117
+ # Other - contamination mostly
118
+ "DopeorNope/COKAL-v1-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/566",
119
+ "CultriX/MistralTrix-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/556",
120
+ "Contamination/contaminated_proof_7b_v1.0": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/664",
121
+ "Contamination/contaminated_proof_7b_v1.0_safetensor": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/664",
122
+ }
123
+
124
+ # Models which have been requested by orgs to not be submitted on the leaderboard
125
+ DO_NOT_SUBMIT_MODELS = [
126
+ "Voicelab/trurl-2-13b", # trained on MMLU
127
+ "TigerResearch/tigerbot-70b-chat", # per authors request
128
+ "TigerResearch/tigerbot-70b-chat-v2", # per authors request
129
+ "TigerResearch/tigerbot-70b-chat-v4-4k", # per authors request
130
+ ]
131
+
132
+
133
+ def flag_models(leaderboard_data: list[dict]):
134
+ """Flags models based on external criteria or flagged status."""
135
+ for model_data in leaderboard_data:
136
+ # If a model is not flagged, use its "fullname" as a key
137
+ if model_data[AutoEvalColumn.not_flagged.name]:
138
+ flag_key = model_data[AutoEvalColumn.fullname.name]
139
+ else:
140
+ # Merges and moes are flagged
141
+ flag_key = "merged"
142
+
143
+ # Reverse the logic: Check for non-flagged models instead
144
+ if flag_key in FLAGGED_MODELS:
145
+ issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
146
+ issue_link = model_hyperlink(
147
+ FLAGGED_MODELS[flag_key],
148
+ f"See discussion #{issue_num}",
149
+ )
150
+ model_data[
151
+ AutoEvalColumn.model.name
152
+ ] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
153
+ model_data[AutoEvalColumn.not_flagged.name] = False
154
+ else:
155
+ model_data[AutoEvalColumn.not_flagged.name] = True
156
+
157
+
158
+ def remove_forbidden_models(leaderboard_data: list[dict]):
159
+ """Removes models from the leaderboard based on the DO_NOT_SUBMIT list."""
160
+ indices_to_remove = []
161
+ for ix, model in enumerate(leaderboard_data):
162
+ if model[AutoEvalColumn.fullname.name] in DO_NOT_SUBMIT_MODELS:
163
+ indices_to_remove.append(ix)
164
+
165
+ # Remove the models from the list
166
+ for ix in reversed(indices_to_remove):
167
+ leaderboard_data.pop(ix)
168
+ return leaderboard_data
169
+
170
+
171
+ def filter_models_flags(leaderboard_data: list[dict]):
172
+ leaderboard_data = remove_forbidden_models(leaderboard_data)
173
+ flag_models(leaderboard_data)
src/leaderboard/read_evals.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from pathlib import Path
3
+ from json import JSONDecodeError
4
+ import logging
5
+ import math
6
+
7
+ from dataclasses import dataclass, field
8
+ from typing import Optional, Dict, List
9
+
10
+ from tqdm import tqdm
11
+ from tqdm.contrib.logging import logging_redirect_tqdm
12
+
13
+ import numpy as np
14
+
15
+ from src.display.formatting import make_clickable_model
16
+ from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType, parse_datetime
17
+
18
+ # Configure logging
19
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
20
+
21
+
22
+ @dataclass
23
+ class EvalResult:
24
+ # Also see src.display.utils.AutoEvalColumn for what will be displayed.
25
+ eval_name: str # org_model_precision (uid)
26
+ full_model: str # org/model (path on hub)
27
+ org: Optional[str]
28
+ model: str
29
+ revision: str # commit hash, "" if main
30
+ results: Dict[str, float]
31
+ precision: Precision = Precision.Unknown
32
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
33
+ weight_type: WeightType = WeightType.Original
34
+ architecture: str = "Unknown" # From config file
35
+ license: str = "?"
36
+ likes: int = 0
37
+ num_params: int = 0
38
+ date: str = "" # submission date of request file
39
+ still_on_hub: bool = True
40
+ is_merge: bool = False
41
+ not_flagged: bool = False
42
+ status: str = "FINISHED"
43
+ # List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
44
+ tags: List[str] = field(default_factory=list)
45
+
46
+ @classmethod
47
+ def init_from_json_file(cls, json_filepath: str) -> "EvalResult":
48
+ with open(json_filepath, "r") as fp:
49
+ data = json.load(fp)
50
+
51
+ config = data.get("config_general", {})
52
+ precision = Precision.from_str(config.get("model_dtype", "unknown"))
53
+ org_and_model = config.get("model_name", "").split("/", 1)
54
+ org = org_and_model[0] if len(org_and_model) > 1 else None
55
+ model = org_and_model[-1]
56
+ if len(org_and_model) == 1:
57
+ org = None
58
+ model = org_and_model[0]
59
+ result_key = f"{model}_{precision.value.name}"
60
+ else:
61
+ org = org_and_model[0]
62
+ model = org_and_model[1]
63
+ result_key = f"{org}_{model}_{precision.value.name}"
64
+ full_model = "/".join(org_and_model)
65
+
66
+ results = cls.extract_results(data) # Properly call the method to extract results
67
+
68
+ return cls(
69
+ eval_name=result_key,
70
+ full_model=full_model,
71
+ org=org,
72
+ model=model,
73
+ results=results,
74
+ precision=precision,
75
+ revision=config.get("model_sha", ""),
76
+ )
77
+
78
+ @staticmethod
79
+ def extract_results(data: Dict) -> Dict[str, float]:
80
+ """
81
+ Extract and process benchmark results from a given dict.
82
+
83
+ Parameters:
84
+ - data (Dict): A dictionary containing benchmark data. This dictionary must
85
+ include 'versions' and 'results' keys with respective sub-data.
86
+
87
+ Returns:
88
+ - Dict[str, float]: A dictionary where keys are benchmark names and values
89
+ are the processed average scores as percentages.
90
+
91
+ Notes:
92
+ - The method specifically checks for certain benchmark names to skip outdated entries.
93
+ - Handles NaN values by setting the corresponding benchmark result to 0.0.
94
+ - Averages scores across metrics for benchmarks found in the data, in a percentage format.
95
+ """
96
+ results = {}
97
+ for task in Tasks:
98
+ task = task.value
99
+ # We skip old mmlu entries
100
+ if task.benchmark == "hendrycksTest":
101
+ for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
102
+ if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
103
+ continue
104
+
105
+ # Some benchamrk values are NaNs, mostly truthfulQA
106
+ # Would be more optimal (without the whole dict itertion) if benchmark name was same as key in results
107
+ # e.g. not harness|truthfulqa:mc|0 but truthfulqa:mc
108
+ for k, v in data["results"].items():
109
+ if task.benchmark in k:
110
+ if math.isnan(float(v[task.metric])):
111
+ results[task.benchmark] = 0.0
112
+ continue
113
+
114
+ # We average all scores of a given metric (mostly for mmlu)
115
+ accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
116
+ if accs.size == 0 or any([acc is None for acc in accs]):
117
+ continue
118
+
119
+ mean_acc = np.mean(accs) * 100.0
120
+ results[task.benchmark] = mean_acc
121
+
122
+ return results
123
+
124
+ def update_with_request_file(self, requests_path):
125
+ """Finds the relevant request file for the current model and updates info with it."""
126
+ try:
127
+ request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
128
+ if request_file is None:
129
+ logging.warning(f"No request file for {self.org}/{self.model}")
130
+ self.status = "FAILED"
131
+ return
132
+
133
+ with open(request_file, "r") as f:
134
+ request = json.load(f)
135
+
136
+ self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
137
+ self.weight_type = WeightType[request.get("weight_type", "Original")]
138
+ self.num_params = int(request.get("params", 0)) # Ensuring type safety
139
+ self.date = request.get("submitted_time", "")
140
+ self.architecture = request.get("architectures", "Unknown")
141
+ self.status = request.get("status", "FAILED")
142
+
143
+ except FileNotFoundError:
144
+ self.status = "FAILED"
145
+ logging.error(f"Request file: {request_file} not found for {self.org}/{self.model}")
146
+ except JSONDecodeError:
147
+ self.status = "FAILED"
148
+ logging.error(f"Error decoding JSON from the request file for {self.org}/{self.model}")
149
+ except KeyError as e:
150
+ self.status = "FAILED"
151
+ logging.error(f"Key error {e} in processing request file for {self.org}/{self.model}")
152
+ except Exception as e: # Catch-all for any other unexpected exceptions
153
+ self.status = "FAILED"
154
+ logging.error(f"Unexpected error {e} for {self.org}/{self.model}")
155
+
156
+ def update_with_dynamic_file_dict(self, file_dict):
157
+ """Update object attributes based on the provided dictionary, with error handling for missing keys and type validation."""
158
+ # Default values set for optional or potentially missing keys.
159
+ self.license = file_dict.get("license", "?")
160
+ self.likes = int(file_dict.get("likes", 0)) # Ensure likes is treated as an integer
161
+ self.still_on_hub = file_dict.get("still_on_hub", False) # Default to False if key is missing
162
+ self.tags = file_dict.get("tags", [])
163
+
164
+ # Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
165
+ self.not_flagged = not (any("flagged" in tag for tag in self.tags))
166
+
167
+ def to_dict(self):
168
+ """Converts the Eval Result to a dict compatible with our dataframe display"""
169
+ average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
170
+ data_dict = {
171
+ "eval_name": self.eval_name, # not a column, just a save name,
172
+ AutoEvalColumn.precision.name: self.precision.value.name,
173
+ AutoEvalColumn.model_type.name: self.model_type.value.name,
174
+ AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
175
+ AutoEvalColumn.weight_type.name: self.weight_type.value.name,
176
+ AutoEvalColumn.architecture.name: self.architecture,
177
+ AutoEvalColumn.model.name: make_clickable_model(self.full_model),
178
+ AutoEvalColumn.fullname.name: self.full_model,
179
+ AutoEvalColumn.revision.name: self.revision,
180
+ AutoEvalColumn.average.name: average,
181
+ AutoEvalColumn.license.name: self.license,
182
+ AutoEvalColumn.likes.name: self.likes,
183
+ AutoEvalColumn.params.name: self.num_params,
184
+ AutoEvalColumn.still_on_hub.name: self.still_on_hub,
185
+ AutoEvalColumn.merged.name: not ("merge" in self.tags if self.tags else False),
186
+ AutoEvalColumn.moe.name: not (
187
+ ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower()
188
+ ),
189
+ AutoEvalColumn.not_flagged.name: self.not_flagged,
190
+ }
191
+
192
+ for task in Tasks:
193
+ data_dict[task.value.col_name] = self.results[task.value.benchmark]
194
+
195
+ return data_dict
196
+
197
+
198
+ def get_request_file_for_model(requests_path, model_name, precision):
199
+ """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
200
+ requests_path = Path(requests_path)
201
+ pattern = f"{model_name}_eval_request_*.json"
202
+
203
+ # Using pathlib to find files matching the pattern
204
+ request_files = list(requests_path.glob(pattern))
205
+
206
+ # Sort the files by name in descending order to mimic 'reverse=True'
207
+ request_files.sort(reverse=True)
208
+
209
+ # Select the correct request file based on 'status' and 'precision'
210
+ request_file = None
211
+ for request_file in request_files:
212
+ with request_file.open("r") as f:
213
+ req_content = json.load(f)
214
+ if req_content["status"] == "FINISHED" and req_content["precision"] == precision.split(".")[-1]:
215
+ request_file = str(request_file)
216
+
217
+ # Return empty string if no file found that matches criteria
218
+ return request_file
219
+
220
+
221
+ def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
222
+ """From the path of the results folder root, extract all needed info for results"""
223
+ with open(dynamic_path) as f:
224
+ dynamic_data = json.load(f)
225
+
226
+ results_path = Path(results_path)
227
+ model_files = list(results_path.rglob("results_*.json"))
228
+ model_files.sort(key=lambda file: parse_datetime(file.stem.removeprefix("results_")))
229
+
230
+ eval_results = {}
231
+ # Wrap model_files iteration with tqdm for progress display
232
+ for model_result_filepath in tqdm(model_files, desc="Processing model files"):
233
+ # Creation of result
234
+ eval_result = EvalResult.init_from_json_file(model_result_filepath)
235
+ with logging_redirect_tqdm():
236
+ eval_result.update_with_request_file(requests_path)
237
+
238
+ if eval_result.full_model in dynamic_data:
239
+ eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
240
+ # Hardcoding because of gating problem
241
+ if any([org in eval_result.full_model for org in ["meta-llama/", "google/", "tiiuae/"]]):
242
+ eval_result.still_on_hub = True
243
+
244
+ # Store results of same eval together
245
+ eval_name = eval_result.eval_name
246
+ if eval_name in eval_results.keys():
247
+ eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
248
+ else:
249
+ eval_results[eval_name] = eval_result
250
+
251
+ results = []
252
+ for k, v in eval_results.items():
253
+ try:
254
+ if v.status == "FINISHED":
255
+ v.to_dict() # we test if the dict version is complete
256
+ results.append(v)
257
+ except KeyError as e:
258
+ logging.error(f"Error while checking model {k} {v.date} json, no key: {e}") # not all eval values present
259
+ continue
260
+
261
+ return results
src/populate.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pathlib
2
+ import pandas as pd
3
+ from src.display.formatting import has_no_nan_values, make_clickable_model
4
+ from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row
5
+ from src.leaderboard.filter_models import filter_models_flags
6
+ from src.leaderboard.read_evals import get_raw_eval_results
7
+ from src.display.utils import load_json_data
8
+
9
+
10
+ def _process_model_data(entry, model_name_key="model", revision_key="revision"):
11
+ """Enrich model data with clickable links and revisions."""
12
+ entry[EvalQueueColumn.model.name] = make_clickable_model(entry.get(model_name_key, ""))
13
+ entry[EvalQueueColumn.revision.name] = entry.get(revision_key, "main")
14
+ return entry
15
+
16
+
17
+ def get_evaluation_queue_df(save_path, cols):
18
+ """Generate dataframes for pending, running, and finished evaluation entries."""
19
+ save_path = pathlib.Path(save_path)
20
+ all_evals = []
21
+
22
+ for path in save_path.rglob("*.json"):
23
+ data = load_json_data(path)
24
+ if data:
25
+ all_evals.append(_process_model_data(data))
26
+
27
+ # Organizing data by status
28
+ status_map = {
29
+ "PENDING": ["PENDING", "RERUN"],
30
+ "RUNNING": ["RUNNING"],
31
+ "FINISHED": ["FINISHED", "PENDING_NEW_EVAL"],
32
+ }
33
+ status_dfs = {status: [] for status in status_map}
34
+ for eval_data in all_evals:
35
+ for status, extra_statuses in status_map.items():
36
+ if eval_data["status"] in extra_statuses:
37
+ status_dfs[status].append(eval_data)
38
+
39
+ return tuple(pd.DataFrame(status_dfs[status], columns=cols) for status in ["FINISHED", "RUNNING", "PENDING"])
40
+
41
+
42
+ def get_leaderboard_df(results_path, requests_path, dynamic_path, cols, benchmark_cols):
43
+ """Retrieve and process leaderboard data."""
44
+ raw_data = get_raw_eval_results(results_path, requests_path, dynamic_path)
45
+ all_data_json = [model.to_dict() for model in raw_data] + [baseline_row]
46
+ filter_models_flags(all_data_json)
47
+
48
+ df = pd.DataFrame.from_records(all_data_json)
49
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
50
+ df = df[cols].round(decimals=2)
51
+ df = df[has_no_nan_values(df, benchmark_cols)]
52
+ return raw_data, df
src/radial/radial.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import plotly.graph_objects as go
2
+ import matplotlib.pyplot as plt
3
+ import numpy as np
4
+ import pandas as pd
5
+ import random
6
+ import itertools as it
7
+
8
+ from src.leaderboard.build_leaderboard import build_leadearboard_df
9
+
10
+ def create_plot(selected_models):
11
+ """
12
+ Создает визуализацию для сравнения выбранных моделей по метрикам DeathMath
13
+
14
+ Args:
15
+ selected_models: Список названий моделей для отображения на графике
16
+
17
+ Returns:
18
+ matplotlib.figure.Figure: График для отображения в интерфейсе
19
+ """
20
+ # Получаем данные моделей из лидерборда
21
+ models_df = build_leadearboard_df()
22
+
23
+ # Если нет выбранных моделей или данные не загружены, возвращаем пустой график
24
+ if not selected_models or models_df.empty:
25
+ fig, ax = plt.subplots(figsize=(10, 6))
26
+ ax.text(0.5, 0.5, "Нет данных для отображения",
27
+ horizontalalignment='center', verticalalignment='center',
28
+ transform=ax.transAxes, fontsize=14)
29
+ ax.set_axis_off()
30
+ return fig
31
+
32
+ # Фильтруем DataFrame, чтобы оставить только выбранные модели
33
+ models_to_show = models_df[models_df['model'].isin(selected_models)]
34
+
35
+ if models_to_show.empty:
36
+ fig, ax = plt.subplots(figsize=(10, 6))
37
+ ax.text(0.5, 0.5, "Выбранные модели не найдены в данных",
38
+ horizontalalignment='center', verticalalignment='center',
39
+ transform=ax.transAxes, fontsize=14)
40
+ ax.set_axis_off()
41
+ return fig
42
+
43
+ # Настройка бар-графика для сравнения моделей
44
+ fig, ax = plt.subplots(figsize=(12, 8))
45
+
46
+ # Ширина столбцов
47
+ bar_width = 0.25
48
+
49
+ # Позиции на оси x
50
+ models_count = len(models_to_show)
51
+ indices = np.arange(models_count)
52
+
53
+ # Цветовая палитра
54
+ colors = ['#1f77b4', '#ff7f0e', '#2ca02c']
55
+
56
+ # Строим столбцы для разных метрик
57
+ ax.bar(indices - bar_width, models_to_show['math_score'], bar_width,
58
+ label='RussianMath Score', color=colors[0])
59
+ ax.bar(indices, models_to_show['physics_score'], bar_width,
60
+ label='RussianPhysics Score', color=colors[1])
61
+ ax.bar(indices + bar_width, models_to_show['score'], bar_width,
62
+ label='Combined Score', color=colors[2])
63
+
64
+ # Настройка осей и меток
65
+ ax.set_xlabel('Модели')
66
+ ax.set_ylabel('Баллы')
67
+ ax.set_title('Сравнение производительности моделей на DeathMath benchmark')
68
+ ax.set_xticks(indices)
69
+ ax.set_xticklabels(models_to_show['model'], rotation=45, ha='right')
70
+ ax.legend()
71
+
72
+ # Ограничение значений по оси y от 0 до 1
73
+ ax.set_ylim(0, 1.0)
74
+
75
+ # Добавляем сетку для лучшей читаемости
76
+ ax.grid(axis='y', linestyle='--', alpha=0.7)
77
+
78
+ # Обеспечиваем, чтобы все метки помещались
79
+ plt.tight_layout()
80
+
81
+ return fig
82
+
83
+ def create_radar_plot(selected_models):
84
+ """
85
+ Создает радиальную диаграмму для сравнения выбранных моделей
86
+
87
+ Args:
88
+ selected_models: Список названий моделей для отображения на графике
89
+
90
+ Returns:
91
+ plotly.graph_objects.Figure: Интерактивный радиальный график
92
+ """
93
+ models = build_leadearboard_df()
94
+ metrics = ["math_score", "physics_score", "score"]
95
+ metric_labels = ["RussianMath", "RussianPhysics", "Combined"]
96
+
97
+ MIN_COLOUR_DISTANCE_BETWEEN_MODELS = 100
98
+ seed = 42
99
+
100
+ def generate_colours(min_distance, seed):
101
+ colour_mapping = {}
102
+ all_models = selected_models
103
+
104
+ for i in it.count():
105
+ min_colour_distance = min_distance - i
106
+ retries_left = 10 * len(all_models)
107
+
108
+ for model_id in all_models:
109
+ random.seed(hash(model_id) + i + seed)
110
+ r, g, b = 0, 0, 0
111
+ too_bright, similar_to_other_model = True, True
112
+
113
+ while (too_bright or similar_to_other_model) and retries_left > 0:
114
+ r, g, b = tuple(random.randint(0, 255) for _ in range(3))
115
+ too_bright = np.min([r, g, b]) > 200
116
+ similar_to_other_model = any(
117
+ np.abs(np.array(colour) - np.array([r, g, b])).sum() < min_colour_distance
118
+ for colour in colour_mapping.values()
119
+ )
120
+ retries_left -= 1
121
+
122
+ colour_mapping[model_id] = (r, g, b)
123
+ if len(colour_mapping) == len(all_models):
124
+ break
125
+
126
+ return colour_mapping
127
+
128
+ colour_mapping = generate_colours(MIN_COLOUR_DISTANCE_BETWEEN_MODELS, seed)
129
+ fig = go.Figure()
130
+
131
+ for _, model_data in models.iterrows():
132
+ model_name = model_data["model"]
133
+ if model_name not in selected_models:
134
+ continue
135
+
136
+ values = [model_data[metric] for metric in metrics]
137
+ color = f'rgb{colour_mapping[model_name]}'
138
+
139
+ fig.add_trace(go.Scatterpolar(
140
+ r=values,
141
+ theta=metric_labels,
142
+ name=model_name,
143
+ fill='toself',
144
+ fillcolor=f'rgba{colour_mapping[model_name] + (0.6,)}',
145
+ line=dict(color=color)
146
+ ))
147
+
148
+ fig.update_layout(
149
+ polar=dict(
150
+ radialaxis=dict(
151
+ visible=True,
152
+ range=[0, 1]
153
+ )
154
+ ),
155
+ showlegend=True,
156
+ title='Сравнение моделей на DeathMath',
157
+ template="plotly_dark",
158
+ )
159
+
160
+ return fig
161
+
src/scripts/create_request_file.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pprint
4
+ from datetime import datetime, timezone
5
+
6
+ import click
7
+ from colorama import Fore
8
+ from huggingface_hub import HfApi, snapshot_download
9
+
10
+ from src.display.utils import ModelType, WeightType
11
+ from src.submission.check_validity import get_model_size
12
+
13
+ EVAL_REQUESTS_PATH = "eval-queue"
14
+ QUEUE_REPO = "open-llm-leaderboard/requests"
15
+
16
+ precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
17
+ model_types = [e.name for e in ModelType]
18
+ weight_types = [e.name for e in WeightType]
19
+
20
+
21
+ def main():
22
+ api = HfApi()
23
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
24
+ snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
25
+
26
+ model_name = click.prompt("Enter model name")
27
+ revision = click.prompt("Enter revision", default="main")
28
+ precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
29
+ model_type = click.prompt("Enter model type", type=click.Choice(model_types))
30
+ weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
31
+ base_model = click.prompt("Enter base model", default="")
32
+ status = click.prompt("Enter status", default="FINISHED")
33
+
34
+ try:
35
+ model_info = api.model_info(repo_id=model_name, revision=revision)
36
+ except Exception as e:
37
+ print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
38
+ return 1
39
+
40
+ model_size = get_model_size(model_info=model_info, precision=precision)
41
+
42
+ try:
43
+ license = model_info.cardData["license"]
44
+ except Exception:
45
+ license = "?"
46
+
47
+ eval_entry = {
48
+ "model": model_name,
49
+ "base_model": base_model,
50
+ "revision": model_info.sha, # force to use the exact model commit
51
+ "private": False,
52
+ "precision": precision,
53
+ "weight_type": weight_type,
54
+ "status": status,
55
+ "submitted_time": current_time,
56
+ "model_type": model_type,
57
+ "likes": model_info.likes,
58
+ "params": model_size,
59
+ "license": license,
60
+ }
61
+
62
+ user_name = ""
63
+ model_path = model_name
64
+ if "/" in model_name:
65
+ user_name = model_name.split("/")[0]
66
+ model_path = model_name.split("/")[1]
67
+
68
+ pprint.pprint(eval_entry)
69
+
70
+ if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
71
+ click.echo("continuing...")
72
+
73
+ out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
74
+ os.makedirs(out_dir, exist_ok=True)
75
+ out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
76
+
77
+ with open(out_path, "w") as f:
78
+ f.write(json.dumps(eval_entry))
79
+
80
+ api.upload_file(
81
+ path_or_fileobj=out_path,
82
+ path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
83
+ repo_id=QUEUE_REPO,
84
+ repo_type="dataset",
85
+ commit_message=f"Add {model_name} to eval queue",
86
+ )
87
+ else:
88
+ click.echo("aborting...")
89
+
90
+
91
+ if __name__ == "__main__":
92
+ main()
src/scripts/update_all_request_files.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import subprocess
4
+
5
+ from src.envs import EVAL_REQUESTS_PATH, H4_TOKEN
6
+ from src.submission.check_validity import check_model_card, get_model_tags, is_model_on_hub
7
+
8
+
9
+ def update_one_model(model_id, data, models_on_the_hub):
10
+ # Model no longer on the hub at all
11
+ if model_id not in models_on_the_hub:
12
+ data["still_on_hub"] = False
13
+ data["likes"] = 0
14
+ data["downloads"] = 0
15
+ data["created_at"] = ""
16
+ data["tags"] = []
17
+ return data
18
+
19
+ # Grabbing model parameters
20
+ model_cfg = models_on_the_hub[model_id]
21
+ data["likes"] = model_cfg.likes
22
+ data["downloads"] = model_cfg.downloads
23
+ data["created_at"] = str(model_cfg.created_at)
24
+ data["license"] = model_cfg.card_data.license if model_cfg.card_data is not None else ""
25
+
26
+ # Grabbing model details
27
+ model_name = model_id
28
+ if model_cfg.card_data is not None and model_cfg.card_data.base_model is not None:
29
+ if isinstance(model_cfg.card_data.base_model, str):
30
+ model_name = model_cfg.card_data.base_model # for adapters, we look at the parent model
31
+ still_on_hub, _, _ = is_model_on_hub(
32
+ model_name=model_name,
33
+ revision=data.get("revision"),
34
+ trust_remote_code=True,
35
+ test_tokenizer=False,
36
+ token=H4_TOKEN,
37
+ )
38
+ # If the model doesn't have a model card or a license, we consider it's deleted
39
+ if still_on_hub:
40
+ try:
41
+ status, _, model_card = check_model_card(model_id)
42
+ if status is False:
43
+ still_on_hub = False
44
+ except Exception:
45
+ model_card = None
46
+ still_on_hub = False
47
+ data["still_on_hub"] = still_on_hub
48
+
49
+ tags = get_model_tags(model_card, model_id) if still_on_hub else []
50
+
51
+ data["tags"] = tags
52
+ return data
53
+
54
+
55
+ def update_models(file_path, models_on_the_hub):
56
+ """
57
+ Search through all JSON files in the specified root folder and its subfolders,
58
+ and update the likes key in JSON dict from value of input dict
59
+ """
60
+ seen_models = []
61
+ with open(file_path, "r") as f:
62
+ model_infos = json.load(f)
63
+ for model_id in model_infos.keys():
64
+ seen_models.append(model_id)
65
+ model_infos[model_id] = update_one_model(
66
+ model_id=model_id, data=model_infos[model_id], models_on_the_hub=models_on_the_hub
67
+ )
68
+
69
+ # If new requests files have been created since we started all this
70
+ # we grab them
71
+ all_models = []
72
+ try:
73
+ for ix, (root, _, files) in enumerate(os.walk(EVAL_REQUESTS_PATH)):
74
+ if ix == 0:
75
+ continue
76
+ for file in files:
77
+ if "eval_request" in file:
78
+ path = root.split("/")[-1] + "/" + file.split("_eval_request")[0]
79
+ all_models.append(path)
80
+ except Exception as e:
81
+ print(e)
82
+ pass
83
+
84
+ for model_id in all_models:
85
+ if model_id not in seen_models:
86
+ model_infos[model_id] = update_one_model(model_id=model_id, data={}, models_on_the_hub=models_on_the_hub)
87
+
88
+ with open(file_path, "w") as f:
89
+ json.dump(model_infos, f, indent=2)
90
+
91
+
92
+ def update_dynamic_files():
93
+ # from gen import gen_answer,gen_judgment\
94
+ subprocess.Popen("python3 ../gen/gen_judgement.py")
95
+
96
+ subprocess.Popen("python3 ../gen/show_result.py --output")
src/submission/check_validity.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from collections import defaultdict
5
+ from datetime import datetime, timedelta, timezone
6
+
7
+ import huggingface_hub
8
+ from huggingface_hub import ModelCard
9
+ from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata
10
+ from transformers import AutoConfig, AutoTokenizer
11
+
12
+ from src.envs import HAS_HIGHER_RATE_LIMIT
13
+
14
+
15
+ # ht to @Wauplin, thank you for the snippet!
16
+ # See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317
17
+ def check_model_card(repo_id: str) -> tuple[bool, str]:
18
+ # Returns operation status, and error message
19
+ try:
20
+ card = ModelCard.load(repo_id)
21
+ except huggingface_hub.utils.EntryNotFoundError:
22
+ return False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None
23
+
24
+ # Enforce license metadata
25
+ if card.data.license is None:
26
+ if not ("license_name" in card.data and "license_link" in card.data):
27
+ return (
28
+ False,
29
+ (
30
+ "License not found. Please add a license to your model card using the `license` metadata or a"
31
+ " `license_name`/`license_link` pair."
32
+ ),
33
+ None,
34
+ )
35
+
36
+ # Enforce card content
37
+ if len(card.text) < 200:
38
+ return False, "Please add a description to your model card, it is too short.", None
39
+
40
+ return True, "", card
41
+
42
+
43
+ def is_model_on_hub(
44
+ model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False
45
+ ) -> tuple[bool, str, AutoConfig]:
46
+ try:
47
+ config = AutoConfig.from_pretrained(
48
+ model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
49
+ ) # , force_download=True)
50
+ if test_tokenizer:
51
+ try:
52
+ AutoTokenizer.from_pretrained(
53
+ model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
54
+ )
55
+ except ValueError as e:
56
+ return (False, f"uses a tokenizer which is not in a transformers release: {e}", None)
57
+ except Exception:
58
+ return (
59
+ False,
60
+ "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
61
+ None,
62
+ )
63
+ return True, None, config
64
+
65
+ except ValueError:
66
+ return (
67
+ False,
68
+ "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
69
+ None,
70
+ )
71
+
72
+ except Exception as e:
73
+ if "You are trying to access a gated repo." in str(e):
74
+ return True, "uses a gated model.", None
75
+ return False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None
76
+
77
+
78
+ def get_model_size(model_info: ModelInfo, precision: str):
79
+ size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
80
+ safetensors = None
81
+ try:
82
+ safetensors = get_safetensors_metadata(model_info.id)
83
+ except Exception as e:
84
+ print(e)
85
+
86
+ if safetensors is not None:
87
+ model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3)
88
+ else:
89
+ try:
90
+ size_match = re.search(size_pattern, model_info.id.lower())
91
+ model_size = size_match.group(0)
92
+ model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
93
+ except AttributeError:
94
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
95
+
96
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
97
+ model_size = size_factor * model_size
98
+ return model_size
99
+
100
+
101
+ def get_model_arch(model_info: ModelInfo):
102
+ return model_info.config.get("architectures", "Unknown")
103
+
104
+
105
+ def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
106
+ if org_or_user not in users_to_submission_dates:
107
+ return True, ""
108
+ submission_dates = sorted(users_to_submission_dates[org_or_user])
109
+
110
+ time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
111
+ submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
112
+
113
+ num_models_submitted_in_period = len(submissions_after_timelimit)
114
+ if org_or_user in HAS_HIGHER_RATE_LIMIT:
115
+ rate_limit_quota = 2 * rate_limit_quota
116
+
117
+ if num_models_submitted_in_period > rate_limit_quota:
118
+ error_msg = f"Organisation or user `{org_or_user}`"
119
+ error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
120
+ error_msg += f"in the last {rate_limit_period} days.\n"
121
+ error_msg += (
122
+ "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
123
+ )
124
+ return False, error_msg
125
+ return True, ""
126
+
127
+
128
+ def already_submitted_models(requested_models_dir: str) -> set[str]:
129
+ depth = 1
130
+ file_names = []
131
+ users_to_submission_dates = defaultdict(list)
132
+
133
+ for root, _, files in os.walk(requested_models_dir):
134
+ current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
135
+ if current_depth == depth:
136
+ for file in files:
137
+ if not file.endswith(".json"):
138
+ continue
139
+ with open(os.path.join(root, file), "r") as f:
140
+ info = json.load(f)
141
+ file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
142
+
143
+ # Select organisation
144
+ if info["model"].count("/") == 0 or "submitted_time" not in info:
145
+ continue
146
+ organisation, _ = info["model"].split("/")
147
+ users_to_submission_dates[organisation].append(info["submitted_time"])
148
+
149
+ return set(file_names), users_to_submission_dates
150
+
151
+
152
+ def get_model_tags(model_card, model: str):
153
+ is_merge_from_metadata = False
154
+ is_moe_from_metadata = False
155
+
156
+ tags = []
157
+ if model_card is None:
158
+ return tags
159
+ if model_card.data.tags:
160
+ is_merge_from_metadata = any(
161
+ [tag in model_card.data.tags for tag in ["merge", "moerge", "mergekit", "lazymergekit"]]
162
+ )
163
+ is_moe_from_metadata = any([tag in model_card.data.tags for tag in ["moe", "moerge"]])
164
+
165
+ is_merge_from_model_card = any(
166
+ keyword in model_card.text.lower() for keyword in ["merged model", "merge model", "moerge"]
167
+ )
168
+ if is_merge_from_model_card or is_merge_from_metadata:
169
+ tags.append("merge")
170
+ is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
171
+ # Hardcoding because of gating problem
172
+ if "Qwen/Qwen1.5-32B" in model:
173
+ is_moe_from_model_card = False
174
+ is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
175
+ if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
176
+ tags.append("moe")
177
+
178
+ return tags
src/submission/submit.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.display.formatting import styled_message
2
+ # from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
3
+ # from src.submission.check_validity import (
4
+ # already_submitted_models,
5
+ # check_model_card,
6
+ # get_model_size,
7
+ # get_model_tags,
8
+ # is_model_on_hub,
9
+ # user_submission_permission,
10
+ # )
11
+
12
+ REQUESTED_MODELS = None
13
+ USERS_TO_SUBMISSION_DATES = None
14
+
15
+
16
+ def add_new_eval(
17
+ model: str,
18
+ ):
19
+ # global REQUESTED_MODELS
20
+ # global USERS_TO_SUBMISSION_DATES
21
+ # if not REQUESTED_MODELS:
22
+ # REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
23
+
24
+ # user_name = ""
25
+ # model_path = model
26
+ # if "/" in model:
27
+ # user_name = model.split("/")[0]
28
+ # model_path = model.split("/")[1]
29
+
30
+ # # precision = precision.split(" ")[0]
31
+ # current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
32
+
33
+ # if model_type is None or model_type == "":
34
+ # return styled_error("Please select a model type.")
35
+
36
+ # # Is the user rate limited?
37
+ # if user_name != "":
38
+ # user_can_submit, error_msg = user_submission_permission(
39
+ # user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
40
+ # )
41
+ # if not user_can_submit:
42
+ # return styled_error(error_msg)
43
+
44
+ # Did the model authors forbid its submission to the leaderboard?
45
+ # if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
46
+ # return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
47
+
48
+ # if model == "CohereForAI/c4ai-command-r-plus":
49
+ # return styled_warning(
50
+ # "This model cannot be submitted manually on the leaderboard before the transformers release."
51
+ # )
52
+
53
+ # # Does the model actually exist?
54
+ # if revision == "":
55
+ # revision = "main"
56
+
57
+ # # Is the model on the hub?
58
+ # if weight_type in ["Delta", "Adapter"]:
59
+ # base_model_on_hub, error, _ = is_model_on_hub(
60
+ # model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True
61
+ # )
62
+ # if not base_model_on_hub:
63
+ # return styled_error(f'Base model "{base_model}" {error}')
64
+
65
+ # architecture = "?"
66
+ # downloads = 0
67
+ # created_at = ""
68
+ # if not weight_type == "Adapter":
69
+ # model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
70
+ # if not model_on_hub or model_config is None:
71
+ # return styled_error(f'Model "{model}" {error}')
72
+ # if model_config is not None:
73
+ # architectures = getattr(model_config, "architectures", None)
74
+ # if architectures:
75
+ # architecture = ";".join(architectures)
76
+ # downloads = getattr(model_config, "downloads", 0)
77
+ # created_at = getattr(model_config, "created_at", "")
78
+
79
+ # Is the model info correctly filled?
80
+ # try:
81
+ # model_info = API.model_info(repo_id=model, revision=revision)
82
+ # except Exception:
83
+ # return styled_error("Could not get your model information. Please fill it up properly.")
84
+
85
+ # model_size = get_model_size(model_info=model_info, precision=precision)
86
+
87
+ # Were the model card and license filled?
88
+ # try:
89
+ # license = model_info.cardData["license"]
90
+ # except Exception:
91
+ # return styled_error("Please select a license for your model")
92
+
93
+ # modelcard_OK, error_msg, model_card = check_model_card(model)
94
+ # if not modelcard_OK:
95
+ # return styled_error(error_msg)
96
+
97
+ # tags = get_model_tags(model_card, model)
98
+
99
+ # # Seems good, creating the eval
100
+ # print("Adding new eval")
101
+
102
+ # eval_entry = {
103
+ # "model": model,
104
+ # # "base_model": base_model,
105
+ # # "revision": model_info.sha, # force to use the exact model commit
106
+ # # "private": private,
107
+ # # "precision": precision,
108
+ # # "params": model_size,
109
+ # # "architectures": architecture,
110
+ # # "weight_type": weight_type,
111
+ # "status": "PENDING",
112
+ # # "submitted_time": current_time,
113
+ # # "model_type": model_type,
114
+ # "job_id": -1,
115
+ # "job_start_time": None,
116
+ # }
117
+
118
+ # supplementary_info = {
119
+ # "likes": model_info.likes,
120
+ # "license": license,
121
+ # "still_on_hub": True,
122
+ # "tags": tags,
123
+ # "downloads": downloads,
124
+ # "created_at": created_at,
125
+ # }
126
+
127
+ # # Check for duplicate submission
128
+ # if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
129
+ # return styled_warning("This model has been already submitted.")
130
+
131
+ # print("Creating eval file")
132
+ # OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
133
+ # os.makedirs(OUT_DIR, exist_ok=True)
134
+ # out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
135
+
136
+ # with open(out_path, "w") as f:
137
+ # f.write(json.dumps(eval_entry))
138
+
139
+ # print("Uploading eval file")
140
+ # API.upload_file(
141
+ # path_or_fileobj=out_path,
142
+ # path_in_repo=out_path.split("eval-queue/")[1],
143
+ # repo_id=QUEUE_REPO,
144
+ # repo_type="dataset",
145
+ # commit_message=f"Add {model} to eval queue",
146
+ # )
147
+
148
+ # We want to grab the latest version of the submission file to not accidentally overwrite it
149
+ # snapshot_download(
150
+ # repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
151
+ # )
152
+
153
+ # with open(DYNAMIC_INFO_FILE_PATH) as f:
154
+ # all_supplementary_info = json.load(f)
155
+
156
+ # # all_supplementary_info[model] = supplementary_info
157
+ # with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
158
+ # json.dump(all_supplementary_info, f, indent=2)
159
+
160
+ # API.upload_file(
161
+ # path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
162
+ # path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
163
+ # repo_id=DYNAMIC_INFO_REPO,
164
+ # repo_type="dataset",
165
+ # commit_message=f"Add {model} to dynamic info queue",
166
+ # )
167
+
168
+ # # Remove the local file
169
+ # os.remove(out_path)
170
+
171
+ return styled_message("Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour.")
src/tools/collections.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
3
+ from huggingface_hub.utils._errors import HfHubHTTPError
4
+ from pandas import DataFrame
5
+
6
+ from src.display.utils import AutoEvalColumn, ModelType
7
+ from src.envs import H4_TOKEN, PATH_TO_COLLECTION
8
+
9
+ # Specific intervals for the collections
10
+ intervals = {
11
+ "1B": pd.Interval(0, 1.5, closed="right"),
12
+ "3B": pd.Interval(2.5, 3.5, closed="neither"),
13
+ "7B": pd.Interval(6, 8, closed="neither"),
14
+ "13B": pd.Interval(10, 14, closed="neither"),
15
+ "30B": pd.Interval(25, 35, closed="neither"),
16
+ "65B": pd.Interval(60, 70, closed="neither"),
17
+ }
18
+
19
+
20
+ def _filter_by_type_and_size(df, model_type, size_interval):
21
+ """Filter DataFrame by model type and parameter size interval."""
22
+ type_emoji = model_type.value.symbol[0]
23
+ filtered_df = df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji]
24
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
25
+ mask = params_column.apply(lambda x: x in size_interval)
26
+ return filtered_df.loc[mask]
27
+
28
+
29
+ def _add_models_to_collection(collection, models, model_type, size):
30
+ """Add best models to the collection and update positions."""
31
+ cur_len_collection = len(collection.items)
32
+ for ix, model in enumerate(models, start=1):
33
+ try:
34
+ collection = add_collection_item(
35
+ PATH_TO_COLLECTION,
36
+ item_id=model,
37
+ item_type="model",
38
+ exists_ok=True,
39
+ note=f"Best {model_type.to_str(' ')} model of around {size} on the leaderboard today!",
40
+ token=H4_TOKEN,
41
+ )
42
+ # Ensure position is correct if item was added
43
+ if len(collection.items) > cur_len_collection:
44
+ item_object_id = collection.items[-1].item_object_id
45
+ update_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix)
46
+ cur_len_collection = len(collection.items)
47
+ break # assuming we only add the top model
48
+ except HfHubHTTPError:
49
+ continue
50
+
51
+
52
+ def update_collections(df: DataFrame):
53
+ """Update collections by filtering and adding the best models."""
54
+ collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
55
+ cur_best_models = []
56
+
57
+ for model_type in ModelType:
58
+ if not model_type.value.name:
59
+ continue
60
+ for size, interval in intervals.items():
61
+ filtered_df = _filter_by_type_and_size(df, model_type, interval)
62
+ best_models = list(
63
+ filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.fullname.name][:10]
64
+ )
65
+ print(model_type.value.symbol, size, best_models)
66
+ _add_models_to_collection(collection, best_models, model_type, size)
67
+ cur_best_models.extend(best_models)
68
+
69
+ # Cleanup
70
+ existing_models = {item.item_id for item in collection.items}
71
+ to_remove = existing_models - set(cur_best_models)
72
+ for item_id in to_remove:
73
+ try:
74
+ delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN)
75
+ except HfHubHTTPError:
76
+ continue
src/tools/model_backlinks.py ADDED
@@ -0,0 +1,1309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ models = [
2
+ "uni-tianyan/Uni-TianYan",
3
+ "fangloveskari/ORCA_LLaMA_70B_QLoRA",
4
+ "garage-bAInd/Platypus2-70B-instruct",
5
+ "upstage/Llama-2-70b-instruct-v2",
6
+ "fangloveskari/Platypus_QLoRA_LLaMA_70b",
7
+ "yeontaek/llama-2-70B-ensemble-v5",
8
+ "TheBloke/Genz-70b-GPTQ",
9
+ "TheBloke/Platypus2-70B-Instruct-GPTQ",
10
+ "psmathur/model_007",
11
+ "yeontaek/llama-2-70B-ensemble-v4",
12
+ "psmathur/orca_mini_v3_70b",
13
+ "ehartford/Samantha-1.11-70b",
14
+ "MayaPH/GodziLLa2-70B",
15
+ "psmathur/model_007_v2",
16
+ "chargoddard/MelangeA-70b",
17
+ "ehartford/Samantha-1.1-70b",
18
+ "psmathur/model_009",
19
+ "upstage/Llama-2-70b-instruct",
20
+ "yeontaek/llama-2-70B-ensemble-v7",
21
+ "yeontaek/llama-2-70B-ensemble-v6",
22
+ "chargoddard/MelangeB-70b",
23
+ "yeontaek/llama-2-70B-ensemble-v3",
24
+ "chargoddard/MelangeC-70b",
25
+ "garage-bAInd/Camel-Platypus2-70B",
26
+ "yeontaek/llama-2-70B-ensemble-v2",
27
+ "garage-bAInd/Camel-Platypus2-70B",
28
+ "migtissera/Synthia-70B-v1.2",
29
+ "v2ray/LLaMA-2-Wizard-70B-QLoRA",
30
+ "quantumaikr/llama-2-70b-fb16-orca-chat-10k",
31
+ "v2ray/LLaMA-2-Wizard-70B-QLoRA",
32
+ "stabilityai/StableBeluga2",
33
+ "quantumaikr/llama-2-70b-fb16-guanaco-1k",
34
+ "garage-bAInd/Camel-Platypus2-70B",
35
+ "migtissera/Synthia-70B-v1.1",
36
+ "migtissera/Synthia-70B",
37
+ "psmathur/model_101",
38
+ "augtoma/qCammel70",
39
+ "augtoma/qCammel-70",
40
+ "augtoma/qCammel-70v1",
41
+ "augtoma/qCammel-70x",
42
+ "augtoma/qCammel-70-x",
43
+ "jondurbin/airoboros-l2-70b-gpt4-1.4.1",
44
+ "dfurman/llama-2-70b-dolphin-peft",
45
+ "jondurbin/airoboros-l2-70b-2.1",
46
+ "TheBloke/llama-2-70b-Guanaco-QLoRA-fp16",
47
+ "quantumaikr/QuantumLM-llama2-70B-Korean-LoRA",
48
+ "quantumaikr/quantumairk-llama-2-70B-instruct",
49
+ "psmathur/model_420",
50
+ "psmathur/model_51",
51
+ "garage-bAInd/Camel-Platypus2-70B",
52
+ "TheBloke/Airoboros-L2-70B-2.1-GPTQ",
53
+ "OpenAssistant/llama2-70b-oasst-sft-v10",
54
+ "garage-bAInd/Platypus2-70B",
55
+ "liuxiang886/llama2-70B-qlora-gpt4",
56
+ "upstage/llama-65b-instruct",
57
+ "quantumaikr/llama-2-70b-fb16-korean",
58
+ "NousResearch/Nous-Hermes-Llama2-70b",
59
+ "v2ray/LLaMA-2-Jannie-70B-QLoRA",
60
+ "jondurbin/airoboros-l2-70b-gpt4-m2.0",
61
+ "jondurbin/airoboros-l2-70b-gpt4-m2.0",
62
+ "OpenAssistant/llama2-70b-oasst-sft-v10",
63
+ "yeontaek/llama-2-70B-ensemble-v8",
64
+ "jondurbin/airoboros-l2-70b-gpt4-2.0",
65
+ "jarradh/llama2_70b_chat_uncensored",
66
+ "WizardLM/WizardMath-70B-V1.0",
67
+ "jordiclive/Llama-2-70b-oasst-1-200",
68
+ "WizardLM/WizardMath-70B-V1.0",
69
+ "jondurbin/airoboros-l2-70b-gpt4-2.0",
70
+ "OpenLemur/lemur-70b-chat-v1",
71
+ "tiiuae/falcon-180B",
72
+ "tiiuae/falcon-180B",
73
+ "stabilityai/StableBeluga1-Delta",
74
+ "psmathur/model_42_70b",
75
+ "psmathur/test_42_70b",
76
+ "TheBloke/fiction.live-Kimiko-V2-70B-fp16",
77
+ "tiiuae/falcon-180B",
78
+ "WizardLM/WizardMath-70B-V1.0",
79
+ "tiiuae/falcon-180B-chat",
80
+ "jondurbin/airoboros-l2-70b-gpt4-2.0",
81
+ "ehartford/samantha-1.1-llama-33b",
82
+ "ajibawa-2023/scarlett-33b",
83
+ "ddobokki/Llama-2-70b-orca-200k",
84
+ "TheBloke/gpt4-alpaca-lora_mlp-65B-HF",
85
+ "tiiuae/falcon-180B-chat",
86
+ "tiiuae/falcon-180B-chat",
87
+ "tiiuae/falcon-180B",
88
+ "TheBloke/Lemur-70B-Chat-v1-GPTQ",
89
+ "NousResearch/Nous-Puffin-70B",
90
+ "WizardLM/WizardLM-70B-V1.0",
91
+ "WizardLM/WizardMath-70B-V1.0",
92
+ "meta-llama/Llama-2-70b-hf",
93
+ "TheBloke/Llama-2-70B-fp16",
94
+ "Weyaxi/llama-2-alpacagpt4-1000step",
95
+ "WizardLM/WizardLM-70B-V1.0",
96
+ "simsim314/WizardLM-70B-V1.0-HF",
97
+ "simsim314/WizardLM-70B-V1.0-HF",
98
+ "WizardLM/WizardLM-70B-V1.0",
99
+ "openbmb/UltraLM-65b",
100
+ "psmathur/model_420_preview",
101
+ "WizardLM/WizardLM-70B-V1.0",
102
+ "simsim314/WizardLM-70B-V1.0-HF",
103
+ "OpenBuddy/openbuddy-llama2-70b-v10.1-bf16",
104
+ "upstage/llama-30b-instruct-2048",
105
+ "jondurbin/airoboros-65b-gpt4-1.2",
106
+ "TheBloke/guanaco-65B-HF",
107
+ "jondurbin/airoboros-65b-gpt4-1.3",
108
+ "meta-llama/Llama-2-70b-chat-hf",
109
+ "ValiantLabs/ShiningValiant",
110
+ "Faradaylab/Aria-70B",
111
+ "lilloukas/GPlatty-30B",
112
+ "TheBloke/VicUnlocked-alpaca-65B-QLoRA-fp16",
113
+ "jondurbin/airoboros-65b-gpt4-1.4-peft",
114
+ "jondurbin/airoboros-65b-gpt4-1.4",
115
+ "jondurbin/airoboros-65b-gpt4-2.0",
116
+ "TheBloke/WizardLM-70B-V1.0-GPTQ",
117
+ "TheBloke/WizardLM-70B-V1.0-GPTQ",
118
+ "ariellee/SuperPlatty-30B",
119
+ "jondurbin/airoboros-65b-gpt4-1.4",
120
+ "jondurbin/airoboros-65b-gpt4-2.0",
121
+ "yeontaek/llama-2-70b-IA3-guanaco",
122
+ "CalderaAI/30B-Lazarus",
123
+ "Aspik101/trurl-2-13b-pl-instruct_unload",
124
+ "ehartford/WizardLM-33B-V1.0-Uncensored",
125
+ "ehartford/WizardLM-33B-V1.0-Uncensored",
126
+ "OpenBuddy/openbuddy-llama-65b-v8-bf16",
127
+ "Aspik101/llama-30b-instruct-2048-PL-lora",
128
+ "h2oai/h2ogpt-research-oasst1-llama-65b",
129
+ "Aspik101/llama-30b-instruct-2048-PL-lora",
130
+ "CalderaAI/30B-Epsilon",
131
+ "Aspik101/llama-30b-2048-instruct-PL-lora_unload",
132
+ "jondurbin/airoboros-65b-gpt4-m2.0",
133
+ "jondurbin/airoboros-65b-gpt4-m2.0",
134
+ "Aeala/Alpaca-elina-65b",
135
+ "TheBloke/robin-65b-v2-fp16",
136
+ "TheBloke/gpt4-alpaca-lora-30b-HF",
137
+ "TheBloke/Llama-2-70B-chat-GPTQ",
138
+ "upstage/llama-30b-instruct",
139
+ "OpenLemur/lemur-70b-v1",
140
+ "lmsys/vicuna-33b-v1.3",
141
+ "ausboss/llama-30b-supercot",
142
+ "ai-business/Luban-13B",
143
+ "Henk717/airochronos-33B",
144
+ "lmsys/vicuna-33b-v1.3",
145
+ "Henk717/airochronos-33B",
146
+ "bavest/fin-llama-33b-merged",
147
+ "jondurbin/airoboros-33b-gpt4-1.4",
148
+ "YeungNLP/firefly-llama-30b",
149
+ "Aspik101/30B-Lazarus-instruct-PL-lora_unload",
150
+ "uukuguy/speechless-llama2-luban-orca-platypus-13b",
151
+ "xxyyy123/test_merge_p_ov1_w0.66_w0.5_n1",
152
+ "jondurbin/airoboros-33b-gpt4-1.2",
153
+ "TheBloke/alpaca-lora-65B-HF",
154
+ "bofenghuang/vigogne-33b-instruct",
155
+ "yeontaek/llama-2-13B-ensemble-v5",
156
+ "garage-bAInd/Platypus-30B",
157
+ "Open-Orca/OpenOrca-Platypus2-13B",
158
+ "kajdun/viwaai-30b_v4",
159
+ "lilloukas/Platypus-30B",
160
+ "Open-Orca/OpenOrca-Platypus2-13B",
161
+ "Henk717/chronoboros-33B",
162
+ "jondurbin/airoboros-33b-2.1",
163
+ "HiTZ/alpaca-lora-65b-en-pt-es-ca",
164
+ "quantumaikr/QuantumLM-70B-hf",
165
+ "uukuguy/speechless-llama2-13b",
166
+ "uukuguy/speechless-llama2-hermes-orca-platypus-13b",
167
+ "openaccess-ai-collective/manticore-30b-chat-pyg-alpha",
168
+ "LLMs/WizardLM-30B-V1.0",
169
+ "TheBloke/WizardLM-30B-fp16",
170
+ "openaccess-ai-collective/hippogriff-30b-chat",
171
+ "concedo/Vicuzard-30B-Uncensored",
172
+ "TFLai/OpenOrca-Platypus2-13B-QLoRA-0.80-epoch",
173
+ "huggingface/llama-65b",
174
+ "huggyllama/llama-65b",
175
+ "gaodrew/gaodrew-llama-30b-instruct-2048-Open-Platypus-100steps",
176
+ "uukuguy/speechless-llama2-hermes-orca-platypus-wizardlm-13b",
177
+ "Sao10K/Mythical-Destroyer-V2-L2-13B",
178
+ "camel-ai/CAMEL-33B-Combined-Data",
179
+ "dsvv-cair/alpaca-cleaned-llama-30b-bf16",
180
+ "MetaIX/GPT4-X-Alpasta-30b",
181
+ "garage-bAInd/Stable-Platypus2-13B",
182
+ "TFLai/Luban-Platypus2-13B-QLora-0.80-epoch",
183
+ "TheBloke/OpenOrca-Platypus2-13B-GPTQ",
184
+ "IkariDev/Athena-tmp",
185
+ "OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16",
186
+ "OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16",
187
+ "Open-Orca/OpenOrcaxOpenChat-Preview2-13B",
188
+ "psmathur/model_007_13b_v2",
189
+ "Aspik101/Vicuzard-30B-Uncensored-instruct-PL-lora_unload",
190
+ "jondurbin/airoboros-33b-gpt4-m2.0",
191
+ "Sao10K/Mythical-Destroyer-L2-13B",
192
+ "TheBloke/Wizard-Vicuna-30B-Uncensored-fp16",
193
+ "ehartford/Wizard-Vicuna-30B-Uncensored",
194
+ "TFLai/Nova-13B",
195
+ "TheBloke/robin-33B-v2-fp16",
196
+ "totally-not-an-llm/PuddleJumper-13b",
197
+ "Aeala/VicUnlocked-alpaca-30b",
198
+ "Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-hf",
199
+ "jondurbin/airoboros-33b-gpt4",
200
+ "jondurbin/airoboros-33b-gpt4-m2.0",
201
+ "tiiuae/falcon-40b-instruct",
202
+ "psmathur/orca_mini_v3_13b",
203
+ "Aeala/GPT4-x-AlpacaDente-30b",
204
+ "MayaPH/GodziLLa-30B",
205
+ "jondurbin/airoboros-33b-gpt4-m2.0",
206
+ "TFLai/SpeechlessV1-Nova-13B",
207
+ "yeontaek/llama-2-13B-ensemble-v4",
208
+ "ajibawa-2023/carl-33b",
209
+ "jondurbin/airoboros-33b-gpt4-2.0",
210
+ "TFLai/Stable-Platypus2-13B-QLoRA-0.80-epoch",
211
+ "jondurbin/airoboros-33b-gpt4-1.3",
212
+ "TehVenom/oasst-sft-6-llama-33b-xor-MERGED-16bit",
213
+ "TFLai/OrcaMini-Platypus2-13B-QLoRA-0.80-epoch",
214
+ "jondurbin/airoboros-33b-gpt4-2.0",
215
+ "chargoddard/Chronorctypus-Limarobormes-13b",
216
+ "jondurbin/airoboros-33b-gpt4-1.3",
217
+ "Open-Orca/OpenOrca-Platypus2-13B",
218
+ "FelixChao/vicuna-33b-coder",
219
+ "FelixChao/vicuna-33b-coder",
220
+ "Gryphe/MythoMix-L2-13b",
221
+ "Aeala/Enterredaas-33b",
222
+ "yeontaek/llama-2-13B-ensemble-v1",
223
+ "TFLai/OpenOrcaPlatypus2-Platypus2-13B-QLora-0.80-epoch",
224
+ "TFLai/Ensemble5-Platypus2-13B-QLora-0.80-epoch",
225
+ "yeontaek/llama-2-13B-ensemble-v3",
226
+ "TFLai/MythoMix-Platypus2-13B-QLoRA-0.80-epoch",
227
+ "yihan6324/llama2-13b-instructmining-40k-sharegpt",
228
+ "timdettmers/guanaco-33b-merged",
229
+ "TFLai/EnsembleV5-Nova-13B",
230
+ "circulus/Llama-2-13b-orca-v1",
231
+ "Undi95/ReMM-SLERP-L2-13B",
232
+ "Gryphe/MythoMax-L2-13b",
233
+ "stabilityai/StableBeluga-13B",
234
+ "circulus/Llama-2-13b-orca-v1",
235
+ "ehartford/WizardLM-30B-Uncensored",
236
+ "The-Face-Of-Goonery/huginnv1.2",
237
+ "TheBloke/OpenOrcaxOpenChat-Preview2-13B-GPTQ",
238
+ "Sao10K/Stheno-L2-13B",
239
+ "bofenghuang/vigogne-2-13b-instruct",
240
+ "The-Face-Of-Goonery/Huginn-13b-FP16",
241
+ "grimpep/L2-MythoMax22b-instruct-Falseblock",
242
+ "TFLai/Nous-Hermes-Platypus2-13B-QLoRA-0.80-epoch",
243
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v4",
244
+ "yeontaek/Platypus2xOpenOrca-13B-IA3",
245
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-ensemble",
246
+ "Open-Orca/LlongOrca-13B-16k",
247
+ "Sao10K/Stheno-Inverted-L2-13B",
248
+ "garage-bAInd/Camel-Platypus2-13B",
249
+ "digitous/Alpacino30b",
250
+ "NousResearch/Nous-Hermes-Llama2-13b",
251
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v3",
252
+ "TFLai/MythicalDestroyerV2-Platypus2-13B-QLora-0.80-epoch",
253
+ "TheBloke/VicUnlocked-30B-LoRA-HF",
254
+ "Undi95/Nous-Hermes-13B-Code",
255
+ "The-Face-Of-Goonery/Chronos-Beluga-v2-13bfp16",
256
+ "NousResearch/Nous-Hermes-Llama2-13b",
257
+ "Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b",
258
+ "TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ",
259
+ "Open-Orca/OpenOrcaxOpenChat-Preview2-13B",
260
+ "Austism/chronos-hermes-13b-v2",
261
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v2.1",
262
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v2",
263
+ "Gryphe/MythoLogic-L2-13b",
264
+ "augtoma/qCammel-13",
265
+ "YeungNLP/firefly-llama2-13b-v1.2",
266
+ "Aspik101/StableBeluga-13B-instruct-PL-lora_unload",
267
+ "andreaskoepf/llama2-13b-megacode2_min100",
268
+ "rombodawg/LosslessMegaCoder-llama2-13b-mini",
269
+ "yulan-team/YuLan-Chat-2-13b-fp16",
270
+ "elinas/chronos-33b",
271
+ "YeungNLP/firefly-llama2-13b",
272
+ "Sao10K/Medusa-13b",
273
+ "OptimalScale/robin-65b-v2-delta",
274
+ "minlik/chinese-alpaca-33b-merged",
275
+ "OpenAssistant/llama2-13b-megacode2-oasst",
276
+ "TheBloke/OpenAssistant-SFT-7-Llama-30B-HF",
277
+ "Undi95/UndiMix-v1-13b",
278
+ "ehartford/Samantha-1.11-13b",
279
+ "beaugogh/Llama2-13b-sharegpt4",
280
+ "Aeala/GPT4-x-AlpacaDente2-30b",
281
+ "luffycodes/nash-vicuna-13b-v1dot5-ep2-w-rag-w-simple",
282
+ "WizardLM/WizardLM-13B-V1.1",
283
+ "uukuguy/speechless-orca-platypus-coig-lite-2k-0.6e-13b",
284
+ "huggyllama/llama-30b",
285
+ "Undi95/ReMM-L2-13B-PIPPA",
286
+ "Undi95/ReMM-L2-13B",
287
+ "gaodrew/gaodrew-gorgonzola-13b",
288
+ "lmsys/vicuna-13b-v1.5",
289
+ "yeontaek/Platypus2xOpenOrca-13B-LoRa",
290
+ "Yhyu13/llama-30B-hf-openassitant",
291
+ "huggingface/llama-30b",
292
+ "lmsys/vicuna-13b-v1.5",
293
+ "TFLai/Athena-Platypus2-13B-QLora-0.80-epoch",
294
+ "TheBloke/dromedary-65b-lora-HF",
295
+ "yeontaek/llama-2-13b-Beluga-QLoRA",
296
+ "The-Face-Of-Goonery/Huginn-13b-V4",
297
+ "The-Face-Of-Goonery/Huginn-13b-v4.5",
298
+ "The-Face-Of-Goonery/Huginn-v3-13b",
299
+ "tiiuae/falcon-40b",
300
+ "WhoTookMyAmogusNickname/NewHope_HF_not_official",
301
+ "gaodrew/OpenOrca-Platypus2-13B-thera-1250",
302
+ "SLAM-group/NewHope",
303
+ "garage-bAInd/Platypus2-13B",
304
+ "migtissera/Synthia-13B",
305
+ "elinas/chronos-13b-v2",
306
+ "mosaicml/mpt-30b-chat",
307
+ "CHIH-HUNG/llama-2-13b-OpenOrca_5w",
308
+ "uukuguy/speechless-hermes-coig-lite-13b",
309
+ "TheBloke/tulu-30B-fp16",
310
+ "uukuguy/speechless-hermes-coig-lite-13b",
311
+ "xDAN-AI/xDAN_13b_l2_lora",
312
+ "lmsys/vicuna-13b-v1.5-16k",
313
+ "openchat/openchat_v3.1",
314
+ "CHIH-HUNG/llama-2-13b-dolphin_5w",
315
+ "Aspik101/vicuna-13b-v1.5-PL-lora_unload",
316
+ "Undi95/MLewd-L2-13B",
317
+ "ehartford/minotaur-llama2-13b-qlora",
318
+ "kajdun/iubaris-13b-v3",
319
+ "TFLai/Limarp-Platypus2-13B-QLoRA-0.80-epoch",
320
+ "openchat/openchat_v3.1",
321
+ "uukuguy/speechless-orca-platypus-coig-lite-4k-0.6e-13b",
322
+ "ziqingyang/chinese-alpaca-2-13b",
323
+ "TFLai/Airboros2.1-Platypus2-13B-QLora-0.80-epoch",
324
+ "yeontaek/llama-2-13b-Guanaco-QLoRA",
325
+ "lmsys/vicuna-13b-v1.5-16k",
326
+ "ehartford/based-30b",
327
+ "kingbri/airolima-chronos-grad-l2-13B",
328
+ "openchat/openchat_v3.2",
329
+ "uukuguy/speechless-orca-platypus-coig-lite-4k-0.5e-13b",
330
+ "yeontaek/Platypus2-13B-LoRa",
331
+ "kingbri/chronolima-airo-grad-l2-13B",
332
+ "openchat/openchat_v3.2",
333
+ "TFLai/PuddleJumper-Platypus2-13B-QLoRA-0.80-epoch",
334
+ "shareAI/llama2-13b-Chinese-chat",
335
+ "ehartford/WizardLM-1.0-Uncensored-Llama2-13b",
336
+ "Aspik101/Redmond-Puffin-13B-instruct-PL-lora_unload",
337
+ "yeontaek/llama-2-13B-ensemble-v6",
338
+ "WizardLM/WizardLM-13B-V1.2",
339
+ "TheBloke/WizardLM-13B-V1.1-GPTQ",
340
+ "bhenrym14/airophin-13b-pntk-16k-fp16",
341
+ "ehartford/WizardLM-1.0-Uncensored-Llama2-13b",
342
+ "Mikael110/llama-2-13b-guanaco-fp16",
343
+ "yeontaek/airoboros-2.1-llama-2-13B-QLoRa",
344
+ "CalderaAI/13B-Legerdemain-L2",
345
+ "grimpep/llama2-22b-wizard_vicuna",
346
+ "grimpep/llama2-22B-GPLATTY",
347
+ "bhenrym14/airophin-13b-pntk-16k-fp16",
348
+ "yeontaek/llama-2-13b-QLoRA",
349
+ "OpenAssistant/llama2-13b-orca-8k-3319",
350
+ "TheBloke/WizardLM-13B-V1-1-SuperHOT-8K-fp16",
351
+ "duliadotio/dulia-13b-8k-alpha",
352
+ "Undi95/LewdEngine",
353
+ "OpenBuddy/openbuddy-llama2-13b-v8.1-fp16",
354
+ "CHIH-HUNG/llama-2-13b-open_orca_20w",
355
+ "bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16",
356
+ "FlagAlpha/Llama2-Chinese-13b-Chat",
357
+ "LLMs/WizardLM-13B-V1.0",
358
+ "chansung/gpt4-alpaca-lora-13b-decapoda-1024",
359
+ "TheBloke/wizardLM-13B-1.0-fp16",
360
+ "digitous/13B-Chimera",
361
+ "yeontaek/Platypus2xOpenOrcaxGuanaco-13B-LoRa",
362
+ "jondurbin/airoboros-l2-13b-2.1",
363
+ "Monero/WizardLM-30B-Uncensored-Guanaco-SuperCOT-30b",
364
+ "TheBloke/UltraLM-13B-fp16",
365
+ "openaccess-ai-collective/minotaur-13b-fixed",
366
+ "NousResearch/Redmond-Puffin-13B",
367
+ "KoboldAI/LLaMA2-13B-Holomax",
368
+ "Lajonbot/WizardLM-13B-V1.2-PL-lora_unload",
369
+ "yeontaek/Platypus2-13B-LoRa-v2",
370
+ "TheBloke/airoboros-13B-HF",
371
+ "jondurbin/airoboros-13b",
372
+ "jjaaaww/posi_13b",
373
+ "CoolWP/llama-2-13b-guanaco-fp16",
374
+ "yeontaek/Platypus2-13B-QLoRa",
375
+ "h2oai/h2ogpt-research-oig-oasst1-512-30b",
376
+ "dfurman/llama-2-13b-guanaco-peft",
377
+ "NousResearch/Redmond-Puffin-13B",
378
+ "pe-nlp/llama-2-13b-platypus-vicuna-wizard",
379
+ "CHIH-HUNG/llama-2-13b-dolphin_20w",
380
+ "NousResearch/Nous-Hermes-13b",
381
+ "NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEconsE4",
382
+ "ehartford/Wizard-Vicuna-13B-Uncensored",
383
+ "TheBloke/Wizard-Vicuna-13B-Uncensored-HF",
384
+ "openchat/openchat_v3.2_super",
385
+ "bhenrym14/airophin-v2-13b-PI-8k-fp16",
386
+ "openaccess-ai-collective/manticore-13b",
387
+ "The-Face-Of-Goonery/Huginn-22b-Prototype",
388
+ "jphme/Llama-2-13b-chat-german",
389
+ "grimpep/llama2-28B-Airo03",
390
+ "TheBloke/Kimiko-v2-13B-fp16",
391
+ "FPHam/Free_Sydney_13b_HF",
392
+ "lmsys/vicuna-13b-v1.3",
393
+ "FelixChao/llama2-13b-math1.1",
394
+ "CalderaAI/13B-BlueMethod",
395
+ "meta-llama/Llama-2-13b-chat-hf",
396
+ "deepse/CodeUp-Llama-2-13b-chat-hf",
397
+ "WizardLM/WizardMath-13B-V1.0",
398
+ "WizardLM/WizardMath-13B-V1.0",
399
+ "HyperbeeAI/Tulpar-7b-v0",
400
+ "xxyyy123/test_qkvo_adptor",
401
+ "xxyyy123/mc_data_30k_from_platpus_orca_7b_10k_v1_lora_qkvo_rank14_v2",
402
+ "openchat/openchat_v2_w",
403
+ "FelixChao/llama2-13b-math1.1",
404
+ "psmathur/orca_mini_v3_7b",
405
+ "TehVenom/Metharme-13b-Merged",
406
+ "xxyyy123/10k_v1_lora_qkvo_rank14_v3",
407
+ "OpenAssistant/llama2-13b-orca-v2-8k-3166",
408
+ "openaccess-ai-collective/wizard-mega-13b",
409
+ "jondurbin/airoboros-13b-gpt4-1.4",
410
+ "jondurbin/airoboros-13b-gpt4-1.4-fp16",
411
+ "Monero/Manticore-13b-Chat-Pyg-Guanaco",
412
+ "FelixChao/llama2-13b-math1.2",
413
+ "chargoddard/platypus-2-22b-relora",
414
+ "FelixChao/llama2-13b-math1.2",
415
+ "Gryphe/MythoBoros-13b",
416
+ "CalderaAI/13B-Ouroboros",
417
+ "OpenAssistant/llama2-13b-orca-v2-8k-3166",
418
+ "heegyu/LIMA2-13b-hf",
419
+ "digitous/13B-HyperMantis",
420
+ "Gryphe/MythoLogic-13b",
421
+ "TheBloke/Airoboros-L2-13B-2.1-GPTQ",
422
+ "chargoddard/platypus2-22b-relora",
423
+ "openchat/openchat_v2",
424
+ "yeontaek/Platypus2-13B-IA3",
425
+ "stabilityai/StableBeluga-7B",
426
+ "circulus/Llama-2-7b-orca-v1",
427
+ "budecosystem/genz-13b-v2",
428
+ "TheBloke/gpt4-x-vicuna-13B-HF",
429
+ "NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEcons",
430
+ "zarakiquemparte/zarafusionex-1.1-l2-7b",
431
+ "Lajonbot/tableBeluga-7B-instruct-pl-lora_unload",
432
+ "jondurbin/airoboros-13b-gpt4",
433
+ "gaodrew/gaodrew-gorgonzola-13b",
434
+ "jondurbin/airoboros-13b-gpt4-1.1",
435
+ "TheBloke/gpt4-alpaca-lora-13B-HF",
436
+ "zarakiquemparte/zarablendex-vq-l2-7b",
437
+ "openaccess-ai-collective/manticore-13b-chat-pyg",
438
+ "Lajonbot/Llama-2-13b-hf-instruct-pl-lora_unload",
439
+ "NobodyExistsOnTheInternet/PuffedLIMA13bQLORA",
440
+ "xxyyy123/10k_v1_lora_qkvo_rank28_v2",
441
+ "jondurbin/airoboros-l2-13b-gpt4-1.4.1",
442
+ "dhmeltzer/Llama-2-13b-hf-eli5-wiki-1024_r_64_alpha_16",
443
+ "NobodyExistsOnTheInternet/PuffedConvo13bLoraE4",
444
+ "yihan6324/llama2-7b-instructmining-40k-sharegpt",
445
+ "CHIH-HUNG/llama-2-13b-Open_Platypus_and_ccp_2.6w",
446
+ "Aeala/GPT4-x-Alpasta-13b",
447
+ "psmathur/orca_mini_v2_13b",
448
+ "YeungNLP/firefly-llama-13b",
449
+ "psmathur/orca_mini_v2_13b",
450
+ "zarakiquemparte/zarafusionix-l2-7b",
451
+ "yihan6324/llama2-7b-instructmining-60k-sharegpt",
452
+ "yihan6324/llama-2-7b-instructmining-60k-sharegpt",
453
+ "layoric/llama-2-13b-code-alpaca",
454
+ "bofenghuang/vigogne-13b-instruct",
455
+ "Lajonbot/vicuna-13b-v1.3-PL-lora_unload",
456
+ "lvkaokao/llama2-7b-hf-chat-lora-v3",
457
+ "ehartford/dolphin-llama-13b",
458
+ "YeungNLP/firefly-llama-13b-v1.2",
459
+ "TheBloke/Kimiko-13B-fp16",
460
+ "kevinpro/Vicuna-13B-CoT",
461
+ "eachadea/vicuna-13b-1.1",
462
+ "pillowtalks-ai/delta13b",
463
+ "TheBloke/vicuna-13B-1.1-HF",
464
+ "TheBloke/Vicuna-13B-CoT-fp16",
465
+ "lmsys/vicuna-13b-delta-v1.1",
466
+ "lmsys/vicuna-13b-v1.1",
467
+ "xxyyy123/20k_v1_lora_qkvo_rank14_v2",
468
+ "TheBloke/guanaco-13B-HF",
469
+ "TheBloke/vicuna-13b-v1.3.0-GPTQ",
470
+ "edor/Stable-Platypus2-mini-7B",
471
+ "totally-not-an-llm/EverythingLM-13b-V2-16k",
472
+ "zarakiquemparte/zaraxe-l2-7b",
473
+ "beaugogh/Llama2-7b-openorca-mc-v2",
474
+ "TheBloke/Nous-Hermes-13B-SuperHOT-8K-fp16",
475
+ "quantumaikr/QuantumLM",
476
+ "jondurbin/airoboros-13b-gpt4-1.2",
477
+ "TheBloke/robin-13B-v2-fp16",
478
+ "TFLai/llama-2-13b-4bit-alpaca-gpt4",
479
+ "yihan6324/llama2-7b-instructmining-orca-40k",
480
+ "dvruette/oasst-llama-13b-2-epochs",
481
+ "Open-Orca/LlongOrca-7B-16k",
482
+ "Aspik101/Nous-Hermes-13b-pl-lora_unload",
483
+ "ehartford/Samantha-1.11-CodeLlama-34b",
484
+ "nkpz/llama2-22b-chat-wizard-uncensored",
485
+ "bofenghuang/vigogne-13b-chat",
486
+ "beaugogh/Llama2-7b-openorca-mc-v1",
487
+ "OptimalScale/robin-13b-v2-delta",
488
+ "pe-nlp/llama-2-13b-vicuna-wizard",
489
+ "chargoddard/llama2-22b",
490
+ "gywy/llama2-13b-chinese-v1",
491
+ "frank098/Wizard-Vicuna-13B-juniper",
492
+ "IGeniusDev/llama13B-quant8-testv1-openorca-customdataset",
493
+ "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-gate_up_down_proj",
494
+ "eachadea/vicuna-13b",
495
+ "yihan6324/llama2-7b-instructmining-orca-90k",
496
+ "chargoddard/llama2-22b-blocktriangular",
497
+ "luffycodes/mcq-vicuna-13b-v1.5",
498
+ "Yhyu13/chimera-inst-chat-13b-hf",
499
+ "luffycodes/mcq-vicuna-13b-v1.5",
500
+ "chargoddard/ypotryll-22b-epoch2-qlora",
501
+ "totally-not-an-llm/EverythingLM-13b-16k",
502
+ "luffycodes/mcq-hal-vicuna-13b-v1.5",
503
+ "openaccess-ai-collective/minotaur-13b",
504
+ "IGeniusDev/llama13B-quant8-testv1-openorca-customdataset",
505
+ "chargoddard/llama2-22b-blocktriangular",
506
+ "TFLai/Platypus2-13B-QLoRA-0.80-epoch",
507
+ "meta-llama/Llama-2-13b-hf",
508
+ "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w-gate_up_down_proj",
509
+ "luffycodes/mcq-hal-vicuna-13b-v1.5",
510
+ "TheBloke/Llama-2-13B-fp16",
511
+ "TaylorAI/Flash-Llama-13B",
512
+ "shareAI/bimoGPT-llama2-13b",
513
+ "wahaha1987/llama_13b_sharegpt94k_fastchat",
514
+ "openchat/openchat_8192",
515
+ "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-q_k_v_o_proj",
516
+ "dvruette/llama-13b-pretrained-sft-do2",
517
+ "CHIH-HUNG/llama-2-13b-alpaca-test",
518
+ "OpenBuddy/openbuddy-llama2-13b-v11.1-bf16",
519
+ "CHIH-HUNG/llama-2-13b-FINETUNE2_TEST_2.2w",
520
+ "project-baize/baize-v2-13b",
521
+ "jondurbin/airoboros-l2-13b-gpt4-m2.0",
522
+ "yeontaek/Platypus2xOpenOrca-13B-LoRa-v2",
523
+ "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w",
524
+ "xzuyn/Alpacino-SuperCOT-13B",
525
+ "jondurbin/airoboros-l2-13b-gpt4-2.0",
526
+ "aiplanet/effi-13b",
527
+ "clibrain/Llama-2-13b-ft-instruct-es",
528
+ "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w",
529
+ "bofenghuang/vigogne-2-7b-instruct",
530
+ "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w-q_k_v_o_proj",
531
+ "bofenghuang/vigogne-2-7b-chat",
532
+ "aiplanet/effi-13b",
533
+ "haonan-li/bactrian-x-llama-13b-merged",
534
+ "beaugogh/Llama2-7b-sharegpt4",
535
+ "HWERI/Llama2-7b-sharegpt4",
536
+ "jondurbin/airoboros-13b-gpt4-1.3",
537
+ "jondurbin/airoboros-c34b-2.1",
538
+ "junelee/wizard-vicuna-13b",
539
+ "TheBloke/wizard-vicuna-13B-HF",
540
+ "Open-Orca/OpenOrca-Preview1-13B",
541
+ "TheBloke/h2ogpt-oasst1-512-30B-HF",
542
+ "TheBloke/Llama-2-13B-GPTQ",
543
+ "camel-ai/CAMEL-13B-Combined-Data",
544
+ "lmsys/vicuna-7b-v1.5",
545
+ "lmsys/vicuna-7b-v1.5-16k",
546
+ "lmsys/vicuna-7b-v1.5",
547
+ "ausboss/llama-13b-supercot",
548
+ "TheBloke/tulu-13B-fp16",
549
+ "NousResearch/Nous-Hermes-llama-2-7b",
550
+ "jlevin/guanaco-13b-llama-2",
551
+ "lmsys/vicuna-7b-v1.5-16k",
552
+ "dvruette/llama-13b-pretrained",
553
+ "nkpz/llama2-22b-daydreamer-v3",
554
+ "dvruette/llama-13b-pretrained-dropout",
555
+ "jondurbin/airoboros-l2-13b-2.1",
556
+ "LLMs/Stable-Vicuna-13B",
557
+ "64bits/LexPodLM-13B",
558
+ "lizhuang144/llama_mirror_13b_v1.0",
559
+ "TheBloke/stable-vicuna-13B-HF",
560
+ "zarakiquemparte/zaraxls-l2-7b",
561
+ "TheBloke/Llama-2-13B-GPTQ",
562
+ "Kiddyz/testlm-3",
563
+ "migtissera/Synthia-7B",
564
+ "zarakiquemparte/zarablend-l2-7b",
565
+ "mosaicml/mpt-30b-instruct",
566
+ "PocketDoc/Dans-PileOfSets-Mk1-llama-13b-merged",
567
+ "vonjack/Qwen-LLaMAfied-HFTok-7B-Chat",
568
+ "l3utterfly/llama2-7b-layla",
569
+ "Lajonbot/vicuna-7b-v1.5-PL-lora_unload",
570
+ "heegyu/LIMA-13b-hf",
571
+ "frank098/WizardLM_13B_juniper",
572
+ "ashercn97/manatee-7b",
573
+ "chavinlo/gpt4-x-alpaca",
574
+ "PocketDoc/Dans-PersonalityEngine-13b",
575
+ "ehartford/WizardLM-1.0-Uncensored-CodeLlama-34b",
576
+ "digitous/Alpacino13b",
577
+ "edor/Hermes-Platypus2-mini-7B",
578
+ "lvkaokao/llama2-7b-hf-chat-lora-v2",
579
+ "Kiddyz/testlm-1-1",
580
+ "Kiddyz/testlm",
581
+ "Kiddyz/testlm-1",
582
+ "Kiddyz/testlm2",
583
+ "radm/Philosophy-Platypus2-13b",
584
+ "aiplanet/effi-13b",
585
+ "Harshvir/Llama-2-7B-physics",
586
+ "YeungNLP/firefly-ziya-13b",
587
+ "LinkSoul/Chinese-Llama-2-7b",
588
+ "PeanutJar/LLaMa-2-PeanutButter_v10-7B",
589
+ "OpenBuddy/openbuddy-llama2-13b-v11-bf16",
590
+ "StudentLLM/Alpagasus-2-13B-QLoRA-pipeline",
591
+ "meta-llama/Llama-2-13b-hf",
592
+ "WizardLM/WizardCoder-Python-34B-V1.0",
593
+ "dvruette/llama-13b-pretrained-sft-epoch-1",
594
+ "camel-ai/CAMEL-13B-Role-Playing-Data",
595
+ "ziqingyang/chinese-llama-2-13b",
596
+ "rombodawg/LosslessMegaCoder-llama2-7b-mini",
597
+ "TheBloke/koala-13B-HF",
598
+ "lmsys/vicuna-7b-delta-v1.1",
599
+ "eachadea/vicuna-7b-1.1",
600
+ "Ejafa/vicuna_7B_vanilla_1.1",
601
+ "lvkaokao/llama2-7b-hf-chat-lora",
602
+ "OpenBuddy/openbuddy-atom-13b-v9-bf16",
603
+ "Norquinal/llama-2-7b-claude-chat-rp",
604
+ "Danielbrdz/Barcenas-7b",
605
+ "heegyu/WizardVicuna2-13b-hf",
606
+ "meta-llama/Llama-2-7b-chat-hf",
607
+ "PeanutJar/LLaMa-2-PeanutButter_v14-7B",
608
+ "PeanutJar/LLaMa-2-PeanutButter_v4-7B",
609
+ "davzoku/cria-llama2-7b-v1.3",
610
+ "OpenBuddy/openbuddy-atom-13b-v9-bf16",
611
+ "lvkaokao/llama2-7b-hf-instruction-lora",
612
+ "Tap-M/Luna-AI-Llama2-Uncensored",
613
+ "ehartford/Samantha-1.11-7b",
614
+ "WizardLM/WizardCoder-Python-34B-V1.0",
615
+ "TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-GPTQ",
616
+ "Mikael110/llama-2-7b-guanaco-fp16",
617
+ "garage-bAInd/Platypus2-7B",
618
+ "PeanutJar/LLaMa-2-PeanutButter_v18_B-7B",
619
+ "mosaicml/mpt-30b",
620
+ "garage-bAInd/Platypus2-7B",
621
+ "huggingface/llama-13b",
622
+ "dvruette/oasst-llama-13b-1000-steps",
623
+ "jordiclive/gpt4all-alpaca-oa-codealpaca-lora-13b",
624
+ "huggyllama/llama-13b",
625
+ "Voicelab/trurl-2-7b",
626
+ "TFLai/llama-13b-4bit-alpaca",
627
+ "gywy/llama2-13b-chinese-v2",
628
+ "lmsys/longchat-13b-16k",
629
+ "Aspik101/trurl-2-7b-pl-instruct_unload",
630
+ "WizardLM/WizardMath-7B-V1.0",
631
+ "Norquinal/llama-2-7b-claude-chat",
632
+ "TheTravellingEngineer/llama2-7b-chat-hf-dpo",
633
+ "HuggingFaceH4/starchat-beta",
634
+ "joehuangx/spatial-vicuna-7b-v1.5-LoRA",
635
+ "conceptofmind/LLongMA-2-13b-16k",
636
+ "tianyil1/denas-llama2",
637
+ "lmsys/vicuna-7b-v1.3",
638
+ "conceptofmind/LLongMA-2-13b-16k",
639
+ "openchat/opencoderplus",
640
+ "ajibawa-2023/scarlett-7b",
641
+ "dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged",
642
+ "psyche/kollama2-7b-v2",
643
+ "heegyu/LIMA2-7b-hf",
644
+ "dhmeltzer/llama-7b-SFT-qlora-eli5-wiki_DPO_ds_RM_top_2_1024_r_64_alpha_16",
645
+ "abhishek/llama2guanacotest",
646
+ "jondurbin/airoboros-l2-7b-2.1",
647
+ "llama-anon/instruct-13b",
648
+ "FelixChao/vicuna-7B-physics",
649
+ "Aspik101/Llama-2-7b-hf-instruct-pl-lora_unload",
650
+ "shibing624/chinese-alpaca-plus-13b-hf",
651
+ "davzoku/cria-llama2-7b-v1.3_peft",
652
+ "quantumaikr/llama-2-7b-hf-guanaco-1k",
653
+ "togethercomputer/Llama-2-7B-32K-Instruct",
654
+ "sia-ai/llama-2-7b-1-percent-open-orca-1000-steps-v0",
655
+ "TheTravellingEngineer/llama2-7b-hf-guanaco",
656
+ "Lajonbot/Llama-2-7b-chat-hf-instruct-pl-lora_unload",
657
+ "jondurbin/airoboros-l2-7b-gpt4-1.4.1",
658
+ "wahaha1987/llama_7b_sharegpt94k_fastchat",
659
+ "FelixChao/vicuna-7B-chemical",
660
+ "TinyPixel/llama2-7b-oa",
661
+ "chaoyi-wu/MedLLaMA_13B",
662
+ "edor/Platypus2-mini-7B",
663
+ "RoversX/llama-2-7b-hf-small-shards-Samantha-V1-SFT",
664
+ "venkycs/llama-v2-7b-32kC-Security",
665
+ "psyche/kollama2-7b",
666
+ "Fredithefish/Guanaco-7B-Uncensored",
667
+ "TheTravellingEngineer/llama2-7b-chat-hf-guanaco",
668
+ "ehartford/WizardLM-13B-Uncensored",
669
+ "PocketDoc/Dans-CreepingSenseOfDoom",
670
+ "wenge-research/yayi-7b-llama2",
671
+ "georgesung/llama2_7b_chat_uncensored",
672
+ "TinyPixel/llama2-7b-instruct",
673
+ "quantumaikr/QuantumLM-7B",
674
+ "xzuyn/MedicWizard-7B",
675
+ "wenge-research/yayi-7b-llama2",
676
+ "TinyPixel/lima-test",
677
+ "elyza/ELYZA-japanese-Llama-2-7b-instruct",
678
+ "lgaalves/llama-2-7b-hf_open-platypus",
679
+ "ziqingyang/chinese-alpaca-2-7b",
680
+ "TehVenom/Pygmalion-Vicuna-1.1-7b",
681
+ "meta-llama/Llama-2-7b-hf",
682
+ "bongchoi/test-llama2-7b",
683
+ "TaylorAI/Flash-Llama-7B",
684
+ "TheTravellingEngineer/llama2-7b-chat-hf-v2",
685
+ "TheTravellingEngineer/llama2-7b-chat-hf-v4",
686
+ "kashif/stack-llama-2",
687
+ "PeanutJar/LLaMa-2-PeanutButter_v18_A-7B",
688
+ "ToolBench/ToolLLaMA-7b-LoRA",
689
+ "Monero/WizardLM-13b-OpenAssistant-Uncensored",
690
+ "TheTravellingEngineer/llama2-7b-chat-hf-v2",
691
+ "TheTravellingEngineer/llama2-7b-chat-hf-v4",
692
+ "mrm8488/llama-2-coder-7b",
693
+ "elyza/ELYZA-japanese-Llama-2-7b-fast-instruct",
694
+ "clibrain/Llama-2-7b-ft-instruct-es",
695
+ "medalpaca/medalpaca-7b",
696
+ "TheBloke/tulu-7B-fp16",
697
+ "OpenBuddy/openbuddy-openllama-13b-v7-fp16",
698
+ "TaylorAI/FLAN-Llama-7B-2_Llama2-7B-Flash_868_full_model",
699
+ "Aspik101/vicuna-7b-v1.3-instruct-pl-lora_unload",
700
+ "jondurbin/airoboros-l2-7b-gpt4-2.0",
701
+ "dhmeltzer/llama-7b-SFT_ds_eli5_1024_r_64_alpha_16_merged",
702
+ "GOAT-AI/GOAT-7B-Community",
703
+ "AtomEchoAI/AtomGPT_56k",
704
+ "julianweng/Llama-2-7b-chat-orcah",
705
+ "TehVenom/Pygmalion-13b-Merged",
706
+ "jondurbin/airoboros-7b-gpt4-1.1",
707
+ "dhmeltzer/llama-7b-SFT_ds_wiki65k_1024_r_64_alpha_16_merged",
708
+ "bofenghuang/vigogne-7b-chat",
709
+ "lmsys/longchat-7b-v1.5-32k",
710
+ "jondurbin/airoboros-l2-7b-gpt4-m2.0",
711
+ "synapsoft/Llama-2-7b-chat-hf-flan2022-1.2M",
712
+ "jondurbin/airoboros-7b-gpt4-1.4",
713
+ "Charlie911/vicuna-7b-v1.5-lora-mctaco",
714
+ "yihan6324/instructmining-platypus-15k",
715
+ "meta-llama/Llama-2-7b-hf",
716
+ "TheTravellingEngineer/llama2-7b-chat-hf-v3",
717
+ "quantumaikr/KoreanLM-hf",
718
+ "openthaigpt/openthaigpt-1.0.0-alpha-7b-chat-ckpt-hf",
719
+ "TheBloke/Llama-2-7B-GPTQ",
720
+ "TheBloke/Llama-2-7B-GPTQ",
721
+ "LLMs/AlpacaGPT4-7B-elina",
722
+ "ehartford/Wizard-Vicuna-7B-Uncensored",
723
+ "TheBloke/Wizard-Vicuna-7B-Uncensored-HF",
724
+ "TheTravellingEngineer/llama2-7b-chat-hf-v3",
725
+ "golaxy/gowizardlm",
726
+ "ehartford/dolphin-llama2-7b",
727
+ "CHIH-HUNG/llama-2-7b-dolphin_10w-test",
728
+ "mncai/chatdoctor",
729
+ "psyche/kollama2-7b-v3",
730
+ "jondurbin/airoboros-7b-gpt4",
731
+ "jondurbin/airoboros-7b",
732
+ "TheBloke/airoboros-7b-gpt4-fp16",
733
+ "mosaicml/mpt-7b-8k-chat",
734
+ "elyza/ELYZA-japanese-Llama-2-7b",
735
+ "bofenghuang/vigogne-7b-instruct",
736
+ "jxhong/CAlign-alpaca-7b",
737
+ "golaxy/goims",
738
+ "jondurbin/airoboros-7b-gpt4-1.2",
739
+ "jphme/orca_mini_v2_ger_7b",
740
+ "psmathur/orca_mini_v2_7b",
741
+ "notstoic/PygmalionCoT-7b",
742
+ "golaxy/gogpt2-13b",
743
+ "golaxy/gogpt2-13b-chat",
744
+ "togethercomputer/LLaMA-2-7B-32K",
745
+ "TheBloke/wizardLM-7B-HF",
746
+ "keyfan/vicuna-chinese-replication-v1.1",
747
+ "golaxy/gogpt2-7b",
748
+ "aiplanet/effi-7b",
749
+ "arver/llama7b-qlora",
750
+ "titan087/OpenLlama13B-Guanaco",
751
+ "chavinlo/alpaca-native",
752
+ "project-baize/baize-healthcare-lora-7B",
753
+ "AlpinDale/pygmalion-instruct",
754
+ "openlm-research/open_llama_13b",
755
+ "jondurbin/airoboros-7b-gpt4-1.3",
756
+ "elyza/ELYZA-japanese-Llama-2-7b-fast",
757
+ "jondurbin/airoboros-gpt-3.5-turbo-100k-7b",
758
+ "uukuguy/speechless-codellama-orca-13b",
759
+ "bigcode/starcoderplus",
760
+ "TheBloke/guanaco-7B-HF",
761
+ "Neko-Institute-of-Science/metharme-7b",
762
+ "TigerResearch/tigerbot-7b-base",
763
+ "golaxy/gogpt-7b",
764
+ "togethercomputer/LLaMA-2-7B-32K",
765
+ "yhyhy3/open_llama_7b_v2_med_instruct",
766
+ "ajibawa-2023/carl-7b",
767
+ "stabilityai/stablelm-base-alpha-7b-v2",
768
+ "conceptofmind/LLongMA-2-7b-16k",
769
+ "TehVenom/Pygmalion_AlpacaLora-7b",
770
+ "jondurbin/airoboros-7b-gpt4-1.4.1-qlora",
771
+ "wannaphong/openthaigpt-0.1.0-beta-full-model_for_open_llm_leaderboard",
772
+ "ausboss/llama7b-wizardlm-unfiltered",
773
+ "project-baize/baize-v2-7b",
774
+ "LMFlow/Robin-v2",
775
+ "HanningZhang/Robin-v2",
776
+ "LMFlow/Robin-7b-v2",
777
+ "OptimalScale/robin-7b-v2-delta",
778
+ "uukuguy/speechless-codellama-platypus-13b",
779
+ "jerryjalapeno/nart-100k-7b",
780
+ "wenge-research/yayi-13b-llama2",
781
+ "fireballoon/baichuan-vicuna-chinese-7b",
782
+ "jlevin/guanaco-unchained-llama-2-7b",
783
+ "csitfun/llama-7b-logicot",
784
+ "DevaMalla/llama7b_alpaca_1gpu_bf16",
785
+ "WeOpenML/PandaLM-Alpaca-7B-v1",
786
+ "illuin/test-custom-llama",
787
+ "yeontaek/WizardCoder-Python-13B-LoRa",
788
+ "ashercn97/giraffe-7b",
789
+ "mosaicml/mpt-7b-chat",
790
+ "abhishek/autotrain-llama-alpaca-peft-52508123785",
791
+ "Neko-Institute-of-Science/pygmalion-7b",
792
+ "TFLai/llama-7b-4bit-alpaca",
793
+ "huggingface/llama-7b",
794
+ "TheBloke/Planner-7B-fp16",
795
+ "shibing624/chinese-llama-plus-13b-hf",
796
+ "AGI-inc/lora_moe_7b_baseline",
797
+ "DevaMalla/llama-base-7b",
798
+ "AGI-inc/lora_moe_7b",
799
+ "togethercomputer/GPT-JT-6B-v0",
800
+ "ehartford/WizardLM-7B-Uncensored",
801
+ "shibing624/chinese-alpaca-plus-7b-hf",
802
+ "beomi/llama-2-ko-7b",
803
+ "mosaicml/mpt-7b-8k-instruct",
804
+ "Enno-Ai/ennodata-7b",
805
+ "mosaicml/mpt-7b-instruct",
806
+ "facebook/opt-iml-max-30b",
807
+ "WeOpenML/Alpaca-7B-v1",
808
+ "TheBloke/Project-Baize-v2-7B-GPTQ",
809
+ "codellama/CodeLlama-13b-Instruct-hf",
810
+ "TheBloke/CodeLlama-13B-Instruct-fp16",
811
+ "facebook/galactica-30b",
812
+ "FreedomIntelligence/phoenix-inst-chat-7b",
813
+ "openlm-research/open_llama_7b_v2",
814
+ "GeorgiaTechResearchInstitute/galpaca-30b",
815
+ "THUDM/chatglm2-6b",
816
+ "togethercomputer/GPT-JT-6B-v1",
817
+ "TheBloke/koala-7B-HF",
818
+ "nathan0/mpt_delta_tuned_model_v3",
819
+ "nathan0/mpt_delta_tuned_model_v2",
820
+ "GeorgiaTechResearchInstitute/galpaca-30b",
821
+ "JosephusCheung/Guanaco",
822
+ "shareAI/CodeLLaMA-chat-13b-Chinese",
823
+ "TigerResearch/tigerbot-7b-sft",
824
+ "Writer/InstructPalmyra-20b",
825
+ "OpenAssistant/codellama-13b-oasst-sft-v10",
826
+ "bigscience/bloomz-7b1-mt",
827
+ "nathan0/mpt_delta_tuned_model_v3",
828
+ "VMware/open-llama-7b-open-instruct",
829
+ "baichuan-inc/Baichuan-7B",
830
+ "anas-awadalla/mpt-7b",
831
+ "mosaicml/mpt-7b",
832
+ "bigscience/bloomz-7b1",
833
+ "ziqingyang/chinese-llama-2-7b",
834
+ "OpenAssistant/codellama-13b-oasst-sft-v10",
835
+ "wenge-research/yayi-7b",
836
+ "tiiuae/falcon-7b",
837
+ "togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1",
838
+ "togethercomputer/RedPajama-INCITE-7B-Instruct",
839
+ "TheBloke/landmark-attention-llama7b-fp16",
840
+ "togethercomputer/GPT-JT-Moderation-6B",
841
+ "h2oai/h2ogpt-gm-oasst1-en-1024-20b",
842
+ "dvruette/gpt-neox-20b-full-precision",
843
+ "TehVenom/Moderator-Chan_GPT-JT-6b",
844
+ "dvruette/oasst-gpt-neox-20b-1000-steps",
845
+ "AlekseyKorshuk/pygmalion-6b-vicuna-chatml",
846
+ "facebook/opt-66b",
847
+ "Salesforce/codegen-16B-nl",
848
+ "Vmware/open-llama-7b-v2-open-instruct",
849
+ "mosaicml/mpt-7b-storywriter",
850
+ "acrastt/Marx-3B-V2",
851
+ "openlm-research/open_llama_7b",
852
+ "Fredithefish/ReasonixPajama-3B-HF",
853
+ "togethercomputer/GPT-NeoXT-Chat-Base-20B",
854
+ "psmathur/orca_mini_13b",
855
+ "RWKV/rwkv-raven-14b",
856
+ "h2oai/h2ogpt-oasst1-512-20b",
857
+ "acrastt/Marx-3B",
858
+ "klosax/open_llama_13b_600bt_preview",
859
+ "synapsoft/Llama-2-7b-hf-flan2022-1.2M",
860
+ "OpenAssistant/oasst-sft-1-pythia-12b",
861
+ "golaxy/gogpt-7b-bloom",
862
+ "Writer/palmyra-large",
863
+ "psmathur/orca_mini_7b",
864
+ "dvruette/oasst-pythia-12b-6000-steps",
865
+ "NousResearch/CodeLlama-13b-hf",
866
+ "codellama/CodeLlama-13b-hf",
867
+ "h2oai/h2ogpt-gm-oasst1-multilang-1024-20b",
868
+ "VMware/open-llama-0.7T-7B-open-instruct-v1.1",
869
+ "dvruette/oasst-pythia-12b-flash-attn-5000-steps",
870
+ "dvruette/oasst-gpt-neox-20b-3000-steps",
871
+ "RobbeD/OpenLlama-Platypus-3B",
872
+ "facebook/opt-30b",
873
+ "acrastt/Puma-3B",
874
+ "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
875
+ "dvruette/oasst-pythia-12b-pretrained-sft",
876
+ "digitous/GPT-R",
877
+ "acrastt/Griffin-3B",
878
+ "togethercomputer/RedPajama-INCITE-Base-7B-v0.1",
879
+ "togethercomputer/RedPajama-INCITE-7B-Base",
880
+ "CobraMamba/mamba-gpt-3b-v3",
881
+ "Danielbrdz/CodeBarcenas-7b",
882
+ "l3utterfly/open-llama-3b-v2-layla",
883
+ "CobraMamba/mamba-gpt-3b-v2",
884
+ "OpenAssistant/pythia-12b-sft-v8-7k-steps",
885
+ "KoboldAI/GPT-NeoX-20B-Erebus",
886
+ "RobbeD/Orca-Platypus-3B",
887
+ "h2oai/h2ogpt-gm-oasst1-en-1024-12b",
888
+ "OpenAssistant/pythia-12b-sft-v8-2.5k-steps",
889
+ "AlekseyKorshuk/chatml-pyg-v1",
890
+ "togethercomputer/RedPajama-INCITE-Chat-7B-v0.1",
891
+ "togethercomputer/RedPajama-INCITE-7B-Chat",
892
+ "digitous/Javelin-R",
893
+ "dvruette/oasst-pythia-12b-reference",
894
+ "EleutherAI/gpt-neox-20b",
895
+ "KoboldAI/fairseq-dense-13B",
896
+ "OpenAssistant/pythia-12b-sft-v8-rlhf-2k-steps",
897
+ "codellama/CodeLlama-7b-Instruct-hf",
898
+ "digitous/Javelin-GPTJ",
899
+ "KoboldAI/GPT-NeoX-20B-Skein",
900
+ "digitous/Javalion-R",
901
+ "h2oai/h2ogpt-oasst1-512-12b",
902
+ "acrastt/Bean-3B",
903
+ "KoboldAI/GPT-J-6B-Skein",
904
+ "nomic-ai/gpt4all-j",
905
+ "databricks/dolly-v2-12b",
906
+ "TehVenom/Dolly_Shygmalion-6b-Dev_V8P2",
907
+ "databricks/dolly-v2-7b",
908
+ "Aspik101/WizardVicuna-Uncensored-3B-instruct-PL-lora_unload",
909
+ "digitous/Adventien-GPTJ",
910
+ "openlm-research/open_llama_3b_v2",
911
+ "RWKV/rwkv-4-14b-pile",
912
+ "Lazycuber/Janemalion-6B",
913
+ "OpenAssistant/pythia-12b-pre-v8-12.5k-steps",
914
+ "digitous/Janin-R",
915
+ "kfkas/Llama-2-ko-7b-Chat",
916
+ "heegyu/WizardVicuna-Uncensored-3B-0719",
917
+ "h2oai/h2ogpt-gm-oasst1-en-1024-open-llama-7b-preview-400bt",
918
+ "TaylorAI/Flash-Llama-3B",
919
+ "kfkas/Llama-2-ko-7b-Chat",
920
+ "digitous/Skegma-GPTJ",
921
+ "digitous/Javalion-GPTJ",
922
+ "Pirr/pythia-13b-deduped-green_devil",
923
+ "TehVenom/PPO_Shygmalion-V8p4_Dev-6b",
924
+ "dvruette/oasst-pythia-6.9b-4000-steps",
925
+ "heegyu/WizardVicuna-3B-0719",
926
+ "psmathur/orca_mini_3b",
927
+ "OpenAssistant/galactica-6.7b-finetuned",
928
+ "frank098/orca_mini_3b_juniper",
929
+ "PygmalionAI/pygmalion-6b",
930
+ "TehVenom/PPO_Pygway-V8p4_Dev-6b",
931
+ "TFLai/gpt-neox-20b-4bit-alpaca",
932
+ "Corianas/gpt-j-6B-Dolly",
933
+ "TehVenom/Dolly_Shygmalion-6b",
934
+ "digitous/Janin-GPTJ",
935
+ "TehVenom/GPT-J-Pyg_PPO-6B-Dev-V8p4",
936
+ "EleutherAI/gpt-j-6b",
937
+ "KoboldAI/GPT-J-6B-Shinen",
938
+ "TehVenom/Dolly_Malion-6b",
939
+ "TehVenom/ChanMalion",
940
+ "Salesforce/codegen-6B-nl",
941
+ "Fredithefish/RedPajama-INCITE-Chat-3B-Instruction-Tuning-with-GPT-4",
942
+ "KoboldAI/GPT-J-6B-Janeway",
943
+ "togethercomputer/RedPajama-INCITE-Chat-3B-v1",
944
+ "togethercomputer/Pythia-Chat-Base-7B",
945
+ "heegyu/RedTulu-Uncensored-3B-0719",
946
+ "KoboldAI/PPO_Pygway-6b-Mix",
947
+ "KoboldAI/OPT-13B-Erebus",
948
+ "KoboldAI/fairseq-dense-6.7B",
949
+ "EleutherAI/pythia-12b-deduped",
950
+ "pszemraj/pythia-6.9b-HC3",
951
+ "Fredithefish/Guanaco-3B-Uncensored-v2",
952
+ "facebook/opt-13b",
953
+ "TehVenom/GPT-J-Pyg_PPO-6B",
954
+ "EleutherAI/pythia-6.9b-deduped",
955
+ "Devio/test-1400",
956
+ "Fredithefish/Guanaco-3B-Uncensored",
957
+ "codellama/CodeLlama-7b-hf",
958
+ "acrastt/RedPajama-INCITE-Chat-Instruct-3B-V1",
959
+ "Fredithefish/ScarletPajama-3B-HF",
960
+ "KoboldAI/OPT-13B-Nerybus-Mix",
961
+ "YeungNLP/firefly-bloom-7b1",
962
+ "DanielSc4/RedPajama-INCITE-Chat-3B-v1-RL-LoRA-8bit-test1",
963
+ "klosax/open_llama_7b_400bt_preview",
964
+ "KoboldAI/OPT-13B-Nerys-v2",
965
+ "TehVenom/PPO_Shygmalion-6b",
966
+ "amazon/LightGPT",
967
+ "KnutJaegersberg/black_goo_recipe_c",
968
+ "NousResearch/CodeLlama-7b-hf",
969
+ "togethercomputer/RedPajama-INCITE-Instruct-3B-v1",
970
+ "heegyu/WizardVicuna-open-llama-3b-v2",
971
+ "bigscience/bloom-7b1",
972
+ "Devio/test-22B",
973
+ "RWKV/rwkv-raven-7b",
974
+ "hakurei/instruct-12b",
975
+ "CobraMamba/mamba-gpt-3b",
976
+ "KnutJaegersberg/black_goo_recipe_a",
977
+ "acrastt/OmegLLaMA-3B",
978
+ "codellama/CodeLlama-7b-Instruct-hf",
979
+ "h2oai/h2ogpt-oig-oasst1-512-6_9b",
980
+ "KoboldAI/OPT-6.7B-Erebus",
981
+ "facebook/opt-6.7b",
982
+ "KnutJaegersberg/black_goo_recipe_d",
983
+ "KnutJaegersberg/LLongMA-3b-LIMA",
984
+ "KnutJaegersberg/black_goo_recipe_b",
985
+ "KoboldAI/OPT-6.7B-Nerybus-Mix",
986
+ "health360/Healix-3B",
987
+ "EleutherAI/pythia-12b",
988
+ "Fredithefish/RedPajama-INCITE-Chat-3B-ShareGPT-11K",
989
+ "GeorgiaTechResearchInstitute/galactica-6.7b-evol-instruct-70k",
990
+ "h2oai/h2ogpt-oig-oasst1-256-6_9b",
991
+ "ikala/bloom-zh-3b-chat",
992
+ "Taekyoon/llama2-ko-7b-test",
993
+ "anhnv125/pygmalion-6b-roleplay",
994
+ "TehVenom/DiffMerge_Pygmalion_Main-onto-V8P4",
995
+ "KoboldAI/OPT-6B-nerys-v2",
996
+ "Lazycuber/pyg-instruct-wizardlm",
997
+ "Devio/testC",
998
+ "KoboldAI/OPT-30B-Erebus",
999
+ "Fredithefish/CrimsonPajama",
1000
+ "togethercomputer/RedPajama-INCITE-Base-3B-v1",
1001
+ "bigscience/bloomz-3b",
1002
+ "conceptofmind/Open-LLongMA-3b",
1003
+ "RWKV/rwkv-4-7b-pile",
1004
+ "openlm-research/open_llama_3b",
1005
+ "ewof/koishi-instruct-3b",
1006
+ "DanielSc4/RedPajama-INCITE-Chat-3B-v1-FT-LoRA-8bit-test1",
1007
+ "cerebras/Cerebras-GPT-13B",
1008
+ "EleutherAI/pythia-6.7b",
1009
+ "aisquared/chopt-2_7b",
1010
+ "Azure99/blossom-v1-3b",
1011
+ "PSanni/Deer-3b",
1012
+ "bertin-project/bertin-gpt-j-6B-alpaca",
1013
+ "OpenBuddy/openbuddy-openllama-3b-v10-bf16",
1014
+ "KoboldAI/fairseq-dense-2.7B",
1015
+ "ehartford/CodeLlama-34b-Instruct-hf",
1016
+ "codellama/CodeLlama-34b-Instruct-hf",
1017
+ "TheBloke/CodeLlama-34B-Instruct-fp16",
1018
+ "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2",
1019
+ "openlm-research/open_llama_7b_700bt_preview",
1020
+ "NbAiLab/nb-gpt-j-6B-alpaca",
1021
+ "KoboldAI/OPT-2.7B-Erebus",
1022
+ "Writer/camel-5b-hf",
1023
+ "EleutherAI/pythia-2.7b",
1024
+ "facebook/xglm-7.5B",
1025
+ "EleutherAI/pythia-2.8b-deduped",
1026
+ "klosax/open_llama_3b_350bt_preview",
1027
+ "klosax/openllama-3b-350bt",
1028
+ "KoboldAI/OPT-2.7B-Nerybus-Mix",
1029
+ "KoboldAI/GPT-J-6B-Adventure",
1030
+ "cerebras/Cerebras-GPT-6.7B",
1031
+ "TFLai/pythia-2.8b-4bit-alpaca",
1032
+ "facebook/opt-2.7b",
1033
+ "KoboldAI/OPT-2.7B-Nerys-v2",
1034
+ "bigscience/bloom-3b",
1035
+ "Devio/test100",
1036
+ "RWKV/rwkv-raven-3b",
1037
+ "Azure99/blossom-v2-3b",
1038
+ "codellama/CodeLlama-34b-Python-hf",
1039
+ "bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16",
1040
+ "EleutherAI/gpt-neo-2.7B",
1041
+ "danielhanchen/open_llama_3b_600bt_preview",
1042
+ "HuggingFaceH4/starchat-alpha",
1043
+ "pythainlp/wangchanglm-7.5B-sft-en-sharded",
1044
+ "beaugogh/pythia-1.4b-deduped-sharegpt",
1045
+ "HWERI/pythia-1.4b-deduped-sharegpt",
1046
+ "OpenAssistant/stablelm-7b-sft-v7-epoch-3",
1047
+ "codellama/CodeLlama-7b-Python-hf",
1048
+ "aisquared/chopt-1_3b",
1049
+ "PygmalionAI/metharme-1.3b",
1050
+ "Linly-AI/Chinese-LLaMA-2-13B-hf",
1051
+ "chargoddard/llama-2-34b-uncode",
1052
+ "RWKV/rwkv-4-3b-pile",
1053
+ "pythainlp/wangchanglm-7.5B-sft-enth",
1054
+ "MBZUAI/LaMini-GPT-1.5B",
1055
+ "Writer/palmyra-base",
1056
+ "KoboldAI/fairseq-dense-1.3B",
1057
+ "EleutherAI/pythia-1.4b-deduped",
1058
+ "MBZUAI/lamini-neo-1.3b",
1059
+ "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt",
1060
+ "sartmis1/starcoder-finetune-openapi",
1061
+ "MayaPH/opt-flan-iml-6.7b",
1062
+ "facebook/xglm-4.5B",
1063
+ "WizardLM/WizardCoder-15B-V1.0",
1064
+ "facebook/opt-iml-max-1.3b",
1065
+ "stabilityai/stablelm-tuned-alpha-7b",
1066
+ "aisquared/dlite-v2-1_5b",
1067
+ "stabilityai/stablelm-base-alpha-7b",
1068
+ "sartmis1/starcoder-finetune-selfinstruct",
1069
+ "lizhuang144/starcoder_mirror",
1070
+ "bigcode/starcoder",
1071
+ "TheBloke/CodeLlama-34B-Python-fp16",
1072
+ "open-llm-leaderboard/bloomz-1b7-4bit-alpaca-auto-eval-adapter-applied",
1073
+ "ehartford/CodeLlama-34b-Python-hf",
1074
+ "codellama/CodeLlama-7b-Python-hf",
1075
+ "GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct",
1076
+ "LoupGarou/WizardCoder-Guanaco-15B-V1.0",
1077
+ "golaxy/gogpt-3b-bloom",
1078
+ "EleutherAI/pythia-1.3b",
1079
+ "codellama/CodeLlama-13b-Python-hf",
1080
+ "hakurei/lotus-12B",
1081
+ "NYTK/PULI-GPTrio",
1082
+ "facebook/opt-1.3b",
1083
+ "TheBloke/CodeLlama-13B-Python-fp16",
1084
+ "codellama/CodeLlama-13b-Python-hf",
1085
+ "RWKV/rwkv-raven-1b5",
1086
+ "PygmalionAI/pygmalion-2.7b",
1087
+ "bigscience/bloom-1b7",
1088
+ "gpt2-xl",
1089
+ "LoupGarou/WizardCoder-Guanaco-15B-V1.1",
1090
+ "RWKV/rwkv-4-1b5-pile",
1091
+ "codellama/CodeLlama-34b-hf",
1092
+ "NousResearch/CodeLlama-34b-hf",
1093
+ "rinna/bilingual-gpt-neox-4b-8k",
1094
+ "lxe/Cerebras-GPT-2.7B-Alpaca-SP",
1095
+ "cerebras/Cerebras-GPT-2.7B",
1096
+ "jzjiao/opt-1.3b-rlhf",
1097
+ "EleutherAI/gpt-neo-1.3B",
1098
+ "aisquared/dlite-v1-1_5b",
1099
+ "Corianas/Quokka_2.7b",
1100
+ "MrNJK/gpt2-xl-sft",
1101
+ "facebook/galactica-1.3b",
1102
+ "aisquared/dlite-v2-774m",
1103
+ "EleutherAI/pythia-1b-deduped",
1104
+ "Kunhao/pile-7b-250b-tokens",
1105
+ "w601sxs/b1ade-1b",
1106
+ "rinna/bilingual-gpt-neox-4b",
1107
+ "shaohang/SparseOPT-1.3B",
1108
+ "shaohang/Sparse0.5_OPT-1.3",
1109
+ "EleutherAI/polyglot-ko-12.8b",
1110
+ "Salesforce/codegen-6B-multi",
1111
+ "bigscience/bloom-1b1",
1112
+ "TFLai/gpt-neo-1.3B-4bit-alpaca",
1113
+ "FabbriSimo01/Bloom_1b_Quantized",
1114
+ "MBZUAI/LaMini-GPT-774M",
1115
+ "Locutusque/gpt2-large-conversational",
1116
+ "Devio/test-3b",
1117
+ "stabilityai/stablelm-tuned-alpha-3b",
1118
+ "PygmalionAI/pygmalion-1.3b",
1119
+ "KoboldAI/fairseq-dense-355M",
1120
+ "Rachneet/gpt2-xl-alpaca",
1121
+ "gpt2-large",
1122
+ "Mikivis/gpt2-large-lora-sft",
1123
+ "stabilityai/stablelm-base-alpha-3b",
1124
+ "gpt2-medium",
1125
+ "Kunhao/pile-7b",
1126
+ "aisquared/dlite-v1-774m",
1127
+ "aisquared/dlite-v2-355m",
1128
+ "YeungNLP/firefly-bloom-2b6-v2",
1129
+ "KnutJaegersberg/gpt-2-xl-EvolInstruct",
1130
+ "KnutJaegersberg/galactica-orca-wizardlm-1.3b",
1131
+ "cerebras/Cerebras-GPT-1.3B",
1132
+ "FabbriSimo01/Cerebras_1.3b_Quantized",
1133
+ "facebook/xglm-1.7B",
1134
+ "EleutherAI/pythia-410m-deduped",
1135
+ "TheBloke/GPlatty-30B-SuperHOT-8K-fp16",
1136
+ "DataLinguistic/DataLinguistic-34B-V1.0",
1137
+ "Corianas/Quokka_1.3b",
1138
+ "TheTravellingEngineer/bloom-560m-RLHF-v2",
1139
+ "Corianas/1.3b",
1140
+ "RWKV/rwkv-4-430m-pile",
1141
+ "porkorbeef/Llama-2-13b-sf",
1142
+ "xhyi/PT_GPTNEO350_ATG",
1143
+ "TheBloke/Wizard-Vicuna-13B-Uncensored-GPTQ",
1144
+ "bigscience/bloomz-560m",
1145
+ "TheBloke/medalpaca-13B-GPTQ-4bit",
1146
+ "TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16",
1147
+ "aisquared/dlite-v1-355m",
1148
+ "uukuguy/speechless-codellama-orca-airoboros-13b-0.10e",
1149
+ "yhyhy3/med-orca-instruct-33b",
1150
+ "TheBloke/Wizard-Vicuna-30B-Superhot-8K-fp16",
1151
+ "TheTravellingEngineer/bloom-1b1-RLHF",
1152
+ "MBZUAI/lamini-cerebras-1.3b",
1153
+ "IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1",
1154
+ "TheBloke/WizardLM-7B-uncensored-GPTQ",
1155
+ "TheBloke/EverythingLM-13B-16K-GPTQ",
1156
+ "quantumaikr/open_llama_7b_hf",
1157
+ "TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ",
1158
+ "TheBloke/WizardLM-30B-Uncensored-GPTQ",
1159
+ "IDEA-CCNL/Ziya-LLaMA-13B-v1",
1160
+ "Phind/Phind-CodeLlama-34B-v1",
1161
+ "robowaifudev/megatron-gpt2-345m",
1162
+ "MayaPH/GodziLLa-30B-instruct",
1163
+ "TheBloke/CAMEL-33B-Combined-Data-SuperHOT-8K-fp16",
1164
+ "uukuguy/speechless-codellama-orca-platypus-13b-0.10e",
1165
+ "doas/test2",
1166
+ "BreadAi/PM_modelV2",
1167
+ "bigcode/santacoder",
1168
+ "TheBloke/wizard-vicuna-13B-GPTQ",
1169
+ "porkorbeef/Llama-2-13b",
1170
+ "TehVenom/DiffMerge-DollyGPT-Pygmalion",
1171
+ "PygmalionAI/pygmalion-350m",
1172
+ "TheBloke/orca_mini_v3_7B-GPTQ",
1173
+ "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ",
1174
+ "TheBloke/WizardLM-30B-GPTQ",
1175
+ "bigscience/bloom-560m",
1176
+ "TFLai/gpt2-turkish-uncased",
1177
+ "TheBloke/guanaco-33B-GPTQ",
1178
+ "TheBloke/openchat_v2_openorca_preview-GPTQ",
1179
+ "porkorbeef/Llama-2-13b-public",
1180
+ "TheBloke/LongChat-13B-GPTQ",
1181
+ "yhyhy3/med-orca-instruct-33b",
1182
+ "TheBloke/airoboros-33B-gpt4-1-4-SuperHOT-8K-fp16",
1183
+ "TheBloke/Chinese-Alpaca-33B-SuperHOT-8K-fp16",
1184
+ "MayaPH/FinOPT-Franklin",
1185
+ "TheBloke/WizardLM-33B-V1.0-Uncensored-GPTQ",
1186
+ "TheBloke/Project-Baize-v2-13B-GPTQ",
1187
+ "malhajar/Platypus2-70B-instruct-4bit-gptq",
1188
+ "KoboldAI/OPT-350M-Erebus",
1189
+ "rishiraj/bloom-560m-guanaco",
1190
+ "Panchovix/WizardLM-33B-V1.0-Uncensored-SuperHOT-8k",
1191
+ "doas/test5",
1192
+ "vicgalle/alpaca-7b",
1193
+ "beomi/KoAlpaca-Polyglot-5.8B",
1194
+ "Phind/Phind-CodeLlama-34B-Python-v1",
1195
+ "timdettmers/guanaco-65b-merged",
1196
+ "TheBloke/wizard-mega-13B-GPTQ",
1197
+ "MayaPH/GodziLLa-30B-plus",
1198
+ "TheBloke/Platypus-30B-SuperHOT-8K-fp16",
1199
+ "facebook/opt-350m",
1200
+ "KoboldAI/OPT-350M-Nerys-v2",
1201
+ "TheBloke/robin-33B-v2-GPTQ",
1202
+ "jaspercatapang/Echidna-30B",
1203
+ "TheBloke/llama-30b-supercot-SuperHOT-8K-fp16",
1204
+ "marcchew/test1",
1205
+ "Harshvir/LaMini-Neo-1.3B-Mental-Health_lora",
1206
+ "golaxy/gogpt-560m",
1207
+ "TheBloke/orca_mini_13B-GPTQ",
1208
+ "Panchovix/airoboros-33b-gpt4-1.2-SuperHOT-8k",
1209
+ "Aspik101/tulu-7b-instruct-pl-lora_unload",
1210
+ "Phind/Phind-CodeLlama-34B-v2",
1211
+ "BreadAi/MusePy-1-2",
1212
+ "cerebras/Cerebras-GPT-590M",
1213
+ "microsoft/CodeGPT-small-py",
1214
+ "victor123/WizardLM-13B-1.0",
1215
+ "OptimalScale/robin-65b-v2-delta",
1216
+ "voidful/changpt-bart",
1217
+ "FabbriSimo01/GPT_Large_Quantized",
1218
+ "MayaPH/FinOPT-Lincoln",
1219
+ "KoboldAI/fairseq-dense-125M",
1220
+ "SebastianSchramm/Cerebras-GPT-111M-instruction",
1221
+ "TheTravellingEngineer/bloom-560m-RLHF",
1222
+ "breadlicker45/dough-instruct-base-001",
1223
+ "WizardLM/WizardLM-30B-V1.0",
1224
+ "WizardLM/WizardLM-30B-V1.0",
1225
+ "WizardLM/WizardLM-30B-V1.0",
1226
+ "TaylorAI/Flash-Llama-30M-20001",
1227
+ "porkorbeef/Llama-2-13b-12_153950",
1228
+ "huggingtweets/bladeecity-jerma985",
1229
+ "KnutJaegersberg/megatron-GPT-2-345m-EvolInstruct",
1230
+ "bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16",
1231
+ "microsoft/DialoGPT-small",
1232
+ "Corianas/590m",
1233
+ "facebook/xglm-564M",
1234
+ "EleutherAI/gpt-neo-125m",
1235
+ "EleutherAI/pythia-160m-deduped",
1236
+ "klosax/pythia-160m-deduped-step92k-193bt",
1237
+ "MBZUAI/lamini-neo-125m",
1238
+ "bigcode/tiny_starcoder_py",
1239
+ "concedo/OPT-19M-ChatSalad",
1240
+ "anton-l/gpt-j-tiny-random",
1241
+ "grantprice/Cerebras-GPT-590M-finetuned-DND",
1242
+ "deepnight-research/zsc-text",
1243
+ "WangZeJun/bloom-820m-chat",
1244
+ "cerebras/Cerebras-GPT-256M",
1245
+ "ai-forever/rugpt3large_based_on_gpt2",
1246
+ "alibidaran/medical_transcription_generator",
1247
+ "Deci/DeciCoder-1b",
1248
+ "microsoft/DialoGPT-medium",
1249
+ "ogimgio/gpt-neo-125m-neurallinguisticpioneers",
1250
+ "open-llm-leaderboard/bloom-560m-4bit-alpaca-auto-eval-adapter-applied",
1251
+ "BreadAi/gpt-YA-1-1_160M",
1252
+ "microsoft/DialoGPT-large",
1253
+ "facebook/opt-125m",
1254
+ "huggingtweets/jerma985",
1255
+ "Locutusque/gpt2-conversational-or-qa",
1256
+ "concedo/Pythia-70M-ChatSalad",
1257
+ "roneneldan/TinyStories-1M",
1258
+ "BreadAi/DiscordPy",
1259
+ "bigcode/gpt_bigcode-santacoder",
1260
+ "Tincando/fiction_story_generator",
1261
+ "klosax/pythia-70m-deduped-step44k-92bt",
1262
+ "Quake24/easyTermsSummerizer",
1263
+ "BreadAi/gpt-YA-1-1_70M",
1264
+ "EleutherAI/pythia-160m",
1265
+ "euclaise/gpt-neox-122m-minipile-digits",
1266
+ "MBZUAI/lamini-cerebras-590m",
1267
+ "nicholasKluge/Aira-124M",
1268
+ "MayaPH/FinOPT-Washington",
1269
+ "cyberagent/open-calm-large",
1270
+ "BreadAi/StoryPy",
1271
+ "EleutherAI/pythia-70m",
1272
+ "BreadAi/gpt-Youtube",
1273
+ "roneneldan/TinyStories-33M",
1274
+ "EleutherAI/pythia-70m-deduped",
1275
+ "lgaalves/gpt2_guanaco-dolly-platypus",
1276
+ "Corianas/Quokka_590m",
1277
+ "lgaalves/gpt2_platypus-dolly-guanaco",
1278
+ "cyberagent/open-calm-7b",
1279
+ "RWKV/rwkv-4-169m-pile",
1280
+ "gpt2",
1281
+ "roneneldan/TinyStories-28M",
1282
+ "lgaalves/gpt2_open-platypus",
1283
+ "gpt2",
1284
+ "SaylorTwift/gpt2_test",
1285
+ "roneneldan/TinyStories-3M",
1286
+ "nthngdy/pythia-owt2-70m-50k",
1287
+ "Corianas/256_5epoch",
1288
+ "roneneldan/TinyStories-8M",
1289
+ "lgaalves/gpt2-dolly",
1290
+ "nthngdy/pythia-owt2-70m-100k",
1291
+ "aisquared/dlite-v2-124m",
1292
+ "mncai/SGPT-1.3B-insurance-epoch10",
1293
+ "huggingtweets/gladosystem",
1294
+ "abhiramtirumala/DialoGPT-sarcastic-medium",
1295
+ "MBZUAI/lamini-cerebras-256m",
1296
+ "cerebras/Cerebras-GPT-111M",
1297
+ "uberkie/metharme-1.3b-finetuned",
1298
+ "MBZUAI/lamini-cerebras-111m",
1299
+ "psyche/kogpt",
1300
+ "Corianas/Quokka_256m",
1301
+ "vicgalle/gpt2-alpaca-gpt4",
1302
+ "aisquared/dlite-v1-124m",
1303
+ "Mikivis/xuanxuan",
1304
+ "MBZUAI/LaMini-GPT-124M",
1305
+ "vicgalle/gpt2-alpaca",
1306
+ "huashiyiqike/testmodel",
1307
+ "Corianas/111m",
1308
+ "baseline",
1309
+ ]
src/tools/plots.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import plotly.express as px
4
+ from plotly.graph_objs import Figure
5
+
6
+ from src.display.utils import AutoEvalColumn, Task, Tasks
7
+ from src.display.utils import human_baseline_row as HUMAN_BASELINE
8
+ from src.leaderboard.filter_models import FLAGGED_MODELS
9
+ from src.leaderboard.read_evals import EvalResult
10
+
11
+
12
+ def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame:
13
+ """
14
+ Generates a DataFrame containing the maximum scores until each date.
15
+
16
+ :param results_df: A DataFrame containing result information including metric scores and dates.
17
+ :return: A new DataFrame containing the maximum scores until each date for every metric.
18
+ """
19
+ # Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it
20
+ results_df = pd.DataFrame(raw_data)
21
+ # results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True)
22
+ results_df.sort_values(by="date", inplace=True)
23
+
24
+ # Step 2: Initialize the scores dictionary
25
+ scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]}
26
+
27
+ # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
28
+ for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]:
29
+ current_max = 0
30
+ last_date = ""
31
+ column = task.col_name
32
+ for _, row in results_df.iterrows():
33
+ current_model = row["full_model"]
34
+ # We ignore models that are flagged/no longer on the hub/not finished
35
+ to_ignore = (
36
+ not row["still_on_hub"]
37
+ or not row["not_flagged"]
38
+ or current_model in FLAGGED_MODELS
39
+ or row["status"] != "FINISHED"
40
+ )
41
+ if to_ignore:
42
+ continue
43
+
44
+ current_date = row["date"]
45
+ if task.benchmark == "Average":
46
+ current_score = np.mean(list(row["results"].values()))
47
+ else:
48
+ current_score = row["results"][task.benchmark]
49
+
50
+ if current_score > current_max:
51
+ if current_date == last_date and len(scores[column]) > 0:
52
+ scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score}
53
+ else:
54
+ scores[column].append({"model": current_model, "date": current_date, "score": current_score})
55
+ current_max = current_score
56
+ last_date = current_date
57
+
58
+ # Step 4: Return all dictionaries as DataFrames
59
+ return {k: pd.DataFrame(v) for k, v in scores.items()}
60
+
61
+
62
+ def create_plot_df(scores_df: dict[str : pd.DataFrame]) -> pd.DataFrame:
63
+ """
64
+ Transforms the scores DataFrame into a new format suitable for plotting.
65
+
66
+ :param scores_df: A DataFrame containing metric scores and dates.
67
+ :return: A new DataFrame reshaped for plotting purposes.
68
+ """
69
+ # Initialize the list to store DataFrames
70
+ dfs = []
71
+ # Iterate over the cols and create a new DataFrame for each column
72
+ for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
73
+ d = scores_df[col].reset_index(drop=True)
74
+ d["task"] = col
75
+ dfs.append(d)
76
+
77
+ # Concatenate all the created DataFrames
78
+ concat_df = pd.concat(dfs, ignore_index=True)
79
+
80
+ # Sort values by 'date'
81
+ concat_df.sort_values(by="date", inplace=True)
82
+ concat_df.reset_index(drop=True, inplace=True)
83
+ return concat_df
84
+
85
+
86
+ def create_metric_plot_obj(df: pd.DataFrame, metrics: list[str], title: str) -> Figure:
87
+ """
88
+ Create a Plotly figure object with lines representing different metrics
89
+ and horizontal dotted lines representing human baselines.
90
+
91
+ :param df: The DataFrame containing the metric values, names, and dates.
92
+ :param metrics: A list of strings representing the names of the metrics
93
+ to be included in the plot.
94
+ :param title: A string representing the title of the plot.
95
+ :return: A Plotly figure object with lines representing metrics and
96
+ horizontal dotted lines representing human baselines.
97
+ """
98
+
99
+ # Filter the DataFrame based on the specified metrics
100
+ df = df[df["task"].isin(metrics)]
101
+
102
+ # Filter the human baselines based on the specified metrics
103
+ filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics}
104
+
105
+ # Create a line figure using plotly express with specified markers and custom data
106
+ fig = px.line(
107
+ df,
108
+ x="date",
109
+ y="score",
110
+ color="task",
111
+ markers=True,
112
+ custom_data=["task", "score", "model"],
113
+ title=title,
114
+ )
115
+
116
+ # Update hovertemplate for better hover interaction experience
117
+ fig.update_traces(
118
+ hovertemplate="<br>".join(
119
+ [
120
+ "Model Name: %{customdata[2]}",
121
+ "Metric Name: %{customdata[0]}",
122
+ "Date: %{x}",
123
+ "Metric Value: %{y}",
124
+ ]
125
+ )
126
+ )
127
+
128
+ # Update the range of the y-axis
129
+ fig.update_layout(yaxis_range=[0, 100])
130
+
131
+ # Create a dictionary to hold the color mapping for each metric
132
+ metric_color_mapping = {}
133
+
134
+ # Map each metric name to its color in the figure
135
+ for trace in fig.data:
136
+ metric_color_mapping[trace.name] = trace.line.color
137
+
138
+ # Iterate over filtered human baselines and add horizontal lines to the figure
139
+ for metric, value in filtered_human_baselines.items():
140
+ color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
141
+ location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
142
+ # Add horizontal line with matched color and positioned annotation
143
+ fig.add_hline(
144
+ y=value,
145
+ line_dash="dot",
146
+ annotation_text=f"{metric} human baseline",
147
+ annotation_position=location,
148
+ annotation_font_size=10,
149
+ annotation_font_color=color,
150
+ line_color=color,
151
+ )
152
+
153
+ return fig
154
+
155
+
156
+ # Example Usage:
157
+ # human_baselines dictionary is defined.
158
+ # chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")
style.css ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ body {
2
+ padding: 2rem;
3
+ font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif;
4
+ }
5
+
6
+ h1 {
7
+ font-size: 16px;
8
+ margin-top: 0;
9
+ }
10
+
11
+ p {
12
+ color: rgb(107, 114, 128);
13
+ font-size: 15px;
14
+ margin-bottom: 10px;
15
+ margin-top: 5px;
16
+ }
17
+
18
+ .card {
19
+ max-width: 620px;
20
+ margin: 0 auto;
21
+ padding: 16px;
22
+ border: 1px solid lightgray;
23
+ border-radius: 16px;
24
+ }
25
+
26
+ .card p:last-child {
27
+ margin-bottom: 0;
28
+ }
temp_leaderboard/model_data/external/Claude_3.5_Sonnet.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "Claude 3.5 Sonnet",
3
+ "score": 0.33851674641148327,
4
+ "math_score": 0.43157894736842106,
5
+ "physics_score": 0.24545454545454545,
6
+ "total_tokens": 222241,
7
+ "evaluation_time": 670.5163931846619,
8
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
9
+ }
temp_leaderboard/model_data/external/Claude_3.7_Sonnet.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "Claude 3.7 Sonnet",
3
+ "score": 0.36770334928229664,
4
+ "math_score": 0.5263157894736842,
5
+ "physics_score": 0.20909090909090908,
6
+ "total_tokens": 398016,
7
+ "evaluation_time": 1095.7695870399475,
8
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
9
+ }
temp_leaderboard/model_data/external/DeepSeek_V3_0324.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "DeepSeek V3 0324",
3
+ "score": 0.13229665071770336,
4
+ "math_score": 0.1736842105263158,
5
+ "physics_score": 0.09090909090909091,
6
+ "total_tokens": 359162,
7
+ "evaluation_time": 4257.714092254639,
8
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
9
+ }
temp_leaderboard/model_data/external/Gemini_2.0_Flash.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "Gemini 2.0 Flash",
3
+ "score": 0.4217703349282297,
4
+ "math_score": 0.5526315789473685,
5
+ "physics_score": 0.2909090909090909,
6
+ "total_tokens": 731337,
7
+ "evaluation_time": 857.6413371562958,
8
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
9
+ }
temp_leaderboard/model_data/external/Gemini_2.5_Pro_Preview.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "Gemini 2.5 Pro Preview",
3
+ "score": 0.5863636363636364,
4
+ "math_score": 0.8,
5
+ "physics_score": 0.37272727272727274,
6
+ "total_tokens": 1394299,
7
+ "evaluation_time": 4533.155055761337,
8
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
9
+ }
temp_leaderboard/model_data/external/Gemma_3_12B.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "Gemma 3 12B",
3
+ "score": 0.29832535885167466,
4
+ "math_score": 0.4421052631578947,
5
+ "physics_score": 0.15454545454545454,
6
+ "total_tokens": 441055,
7
+ "evaluation_time": 3916.2552330493927,
8
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
9
+ }
temp_leaderboard/model_data/external/Gemma_3_27B.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "Gemma 3 27B",
3
+ "score": 0.32057416267942584,
4
+ "math_score": 0.46842105263157896,
5
+ "physics_score": 0.17272727272727273,
6
+ "total_tokens": 357617,
7
+ "evaluation_time": 2030.33176279068,
8
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
9
+ }
temp_leaderboard/model_data/external/Gemma_3_4B.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "Gemma 3 4B",
3
+ "score": 0.12416267942583732,
4
+ "math_score": 0.22105263157894736,
5
+ "physics_score": 0.02727272727272727,
6
+ "total_tokens": 572095,
7
+ "evaluation_time": 1682.6655840873718,
8
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
9
+ }
temp_leaderboard/model_data/external/GigaChat-2-Max.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "GigaChat-2-Max",
3
+ "score": 0.24952153110047848,
4
+ "math_score": 0.3263157894736842,
5
+ "physics_score": 0.17272727272727273,
6
+ "total_tokens": 220487,
7
+ "evaluation_time": 1006.1656014919281,
8
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
9
+ }
temp_leaderboard/model_data/external/GigaChat-2-Pro.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "GigaChat-2-Pro",
3
+ "score": 0.20861244019138758,
4
+ "math_score": 0.3263157894736842,
5
+ "physics_score": 0.09090909090909091,
6
+ "total_tokens": 212196,
7
+ "evaluation_time": 1002.5515208244324,
8
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
9
+ }