Spaces:
Sleeping
Sleeping
Yumeng Liu
commited on
Commit
·
5b92a5a
1
Parent(s):
f594744
image processing and prediction
Browse files- app.py +27 -4
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,15 +1,30 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
2 |
import fastapi
|
3 |
from fastapi import UploadFile, File, HTTPException
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
import time
|
|
|
|
|
7 |
|
8 |
app = fastapi.FastAPI()
|
9 |
|
10 |
-
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
@app.get("/")
|
@@ -24,11 +39,18 @@ async def predict(received_image: UploadFile = File(...)):
|
|
24 |
# Open the binary data as an image
|
25 |
image = Image.open(io.BytesIO(contents))
|
26 |
|
|
|
27 |
# You can now work with the `image` object
|
28 |
print(image.format, image.size, image.mode) # Example: JPEG (1920, 1080) RGB
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Perform further processing, e.g., save it, analyze it, etc.
|
31 |
-
return {
|
|
|
|
|
32 |
|
33 |
except Exception as e:
|
34 |
print(e)
|
@@ -39,5 +61,6 @@ async def predict(received_image: UploadFile = File(...)):
|
|
39 |
|
40 |
|
41 |
if __name__ == "__main__":
|
|
|
42 |
while True:
|
43 |
time.sleep(10)
|
|
|
1 |
+
from keras import (
|
2 |
+
saving,
|
3 |
+
preprocessing,
|
4 |
+
applications
|
5 |
+
)
|
6 |
import fastapi
|
7 |
from fastapi import UploadFile, File, HTTPException
|
8 |
from PIL import Image
|
9 |
import io
|
10 |
import time
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
|
14 |
app = fastapi.FastAPI()
|
15 |
|
16 |
+
model = saving.load_model("hf://Yumeng-Liu/trash-classifier")
|
17 |
+
|
18 |
|
19 |
+
def get_prediction(img: Image):
|
20 |
+
img = img.resize((224, 224))
|
21 |
+
img = img.convert("L")
|
22 |
+
img_array = preprocessing.image.img_to_array(img)
|
23 |
+
img_array = np.expand_dims(img_array, axis=0) # Add an extra dimension to match the model's input shape
|
24 |
+
img_array = applications.mobilenet_v2.preprocess_input(img_array)
|
25 |
+
|
26 |
+
prediction = model.predict(img_array)
|
27 |
+
return prediction
|
28 |
|
29 |
|
30 |
@app.get("/")
|
|
|
39 |
# Open the binary data as an image
|
40 |
image = Image.open(io.BytesIO(contents))
|
41 |
|
42 |
+
print("Image received")
|
43 |
# You can now work with the `image` object
|
44 |
print(image.format, image.size, image.mode) # Example: JPEG (1920, 1080) RGB
|
45 |
+
print("")
|
46 |
+
|
47 |
+
prediction_result = get_prediction(image)
|
48 |
+
print(prediction_result)
|
49 |
|
50 |
# Perform further processing, e.g., save it, analyze it, etc.
|
51 |
+
return {
|
52 |
+
"result": prediction_result
|
53 |
+
}
|
54 |
|
55 |
except Exception as e:
|
56 |
print(e)
|
|
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
+
print("Starting app")
|
65 |
while True:
|
66 |
time.sleep(10)
|
requirements.txt
CHANGED
@@ -4,4 +4,4 @@ tensorflow
|
|
4 |
keras
|
5 |
huggingface_hub
|
6 |
python-multipart
|
7 |
-
pillow
|
|
|
4 |
keras
|
5 |
huggingface_hub
|
6 |
python-multipart
|
7 |
+
pillow
|