import torch from transformers import AutoModel, AutoImageProcessor from datasets import load_dataset from safetensors.torch import save_file ds = load_dataset("wbensvage/clothes_desc")["train"] ds = ds.select_columns(["image"]) model_name = "google/siglip2-large-patch16-512" model = AutoModel.from_pretrained(model_name, device_map="auto").eval() processor = AutoImageProcessor.from_pretrained(model_name) def encode_images(examples): images = examples["image"] inputs = processor(images=images, return_tensors="pt").to(model.device) with torch.no_grad(): image_embeddings = model.get_image_features(**inputs) return {"vector": image_embeddings.detach().cpu()} print(model.device) ds = ds.map(encode_images, batched=True, batch_size=32) ds.set_format(type="torch", columns=["vector"]) print(ds["vector"].shape) save_file({"vectors": ds["vector"]}, "clothes_desc.safetensors")