__all__ = ['is_cat', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf'] # Cell from fastai.vision.all import * import gradio as gr #def is_cat(x): return x[0].isupper() # Cell learn = load_learner('VegetableVsMeat.pkl') # Cell categories = ('Meat', 'Vegetable') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # Cell image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['01b6f435-79ea-420c-89e8-edf515ea1446.jpg', '01bc3d53-ec5a-4e00-9a2d-88cb1160a50a.jpg', '01f91a06-3599-4f22-8854-056177c51fec.jpg', '3261012543_blue_apple_in_a_wicker_basket.png', '550b5661-880a-42e9-90ed-de0bea2505f0.jpg' ] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)