File size: 10,677 Bytes
639849f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a159806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
639849f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a159806
 
 
 
 
639849f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a159806
639849f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a159806
639849f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import spaces
import bm25s
import gradio as gr
import json
import Stemmer
import time
import torch
import os
from transformers import AutoTokenizer, AutoModel, pipeline , AutoModelForSequenceClassification, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pandas as pd
import torch.nn.functional as F
from datasets import concatenate_datasets, load_dataset, load_from_disk
from huggingface_hub import hf_hub_download
from contextual import ContextualAI
from openai import AzureOpenAI
from datetime import datetime
import sys
from datetime import datetime
from pathlib import Path
from uuid import uuid4
from huggingface_hub import CommitScheduler


JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"

scheduler = CommitScheduler(
    repo_id="ai-law-society-lab/NJ-caselaw-queries",
    repo_type="dataset",
    folder_path=JSON_DATASET_DIR,
    path_in_repo="data", token=os.getenv('hf_token')
)


def format_metadata_as_str(metadata):
    try:
        out =  metadata["case_name"] + ", " + metadata["court_short_name"] + ", " + metadata["date_filed"] + ", precedential status " + metadata["precedential_status"]
    except:
        out = ""
    return out

def show_user_query(user_message, history):
    '''
    Displays user query in the chatbot and removes from textbox.
    :param user_message: user query inputted.
    :param history: 2D array representing chatbot-user conversation.
    :return:
    '''
    return "", history + [[user_message, None]]


def run_extractive_qa(query, contexts):
    extracted_passages = extractive_qa([{"question": query, "context": context} for context in contexts])        
    return extracted_passages


@spaces.GPU(duration=15)
def respond_user_query(history):
    '''
    Overwrite the value of current pairing's history with generated text
    and displays response character-by-character with some lag.
    :param history: 2D array of chatbot history filled with user-bot interactions
    :return: history updated with bot's latest message.
    '''
    start_time_global = time.time()

    query = history[0][0]
    start_time_global = time.time()

    responses = run_retrieval(query)
    print("--- run retrieval: %s seconds ---" % (time.time() - start_time_global))
    #print (responses)

    contexts = [individual_response["text"] for individual_response in responses][:NUM_RESULTS]
    extracted_passages = run_extractive_qa(query, contexts)

    for individual_response, extracted_passage in zip(responses, extracted_passages):
        start, end = extracted_passage["start"], extracted_passage["end"]
        # highlight text
        text = individual_response["text"]
        text = text[:start] + " **" + text[start:end] + "** " + text[end:]

        # display queries in interface
        formatted_response = "##### "
        if individual_response["meta_data"]:
            formatted_response += individual_response["meta_data"]
        else:
            formatted_response += individual_response["opinion_idx"]
        formatted_response += "\n" + text + "\n\n"
        history = history + [[None, formatted_response]]
    print("--- Extractive QA: %s seconds ---" % (time.time() - start_time_global))

    return [history, responses]

def switch_to_reviewing_framework():
    '''
    Replaces textbox for entering user query with annotator review select.
    :return: updated visibility for textbox and radio button props.
    '''
    return gr.Textbox(visible=False), gr.Dataset(visible=False), gr.Textbox(visible=True, interactive=True), gr.Button(visible=True)

def reset_interface():
    '''
    Resets chatbot interface to original position where chatbot history,
     reviewing is invisbile is empty and user input textbox is visible.
    :return: textbox visibility, review radio button invisibility,
    next_button invisibility, empty chatbot
    '''

    # remove tmp highlighted word documents
    #for fn in os.listdir("tmp-docs"):
    #    os.remove(os.path.join("tmp-docs", fn))
    return gr.Textbox(visible=True), gr.Button(visible=False), gr.Textbox(visible=False, value=""), None, gr.JSON(visible=False, value=[]), gr.Dataset(visible=True)

###################################################
def mark_like(response_json, like_data: gr.LikeData):
    index_of_msg_reviewed = like_data.index[0] - 1  # 0-indexing
    # add liked information to res
    response_json[index_of_msg_reviewed]["is_msg_liked"] = like_data.liked
    return response_json

"""
def save_json(name: str, greetings: str) -> None:

"""
def register_review(history, additional_feedback, response_json):
    '''
    Writes user review to output file.
    :param history: 2D array representing bot-user conversation so far.
    :return: None, writes to output file.
    ''' 

    res = { "user_query": history[0][0], 
        "responses": response_json,
        "timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 
        "additional_feedback": additional_feedback
    }

    with scheduler.lock:
        with JSON_DATASET_PATH.open("a") as f:
            json.dump(res, f)
            f.write("\n")


# load search functionality here


def load_bm25():
    stemmer = Stemmer.Stemmer("english")
    retriever = bm25s.BM25.load("NJ_index_LLM_chunking", mmap=False)
    return retriever, stemmer # titles

def run_bm25(query):
    query_tokens = bm25s.tokenize(query, stemmer=stemmer)
    results, scores = retriever.retrieve(query_tokens, k=5)
    return results[0]

def load_faiss_index(embeddings):
    nb, d = embeddings.shape # database size, dimension
    faiss_index = faiss.IndexFlatL2(d)   # build the index
    faiss_index.add(embeddings) # add vectors to the index
    return faiss_index

#@spaces.GPU(duration=10)
def run_dense_retrieval(query):
    if "NV" in model_name:
        query_prefix = "Instruct: Given a question, retrieve passages that answer the question\nQuery: "
        max_length = 32768
        print (query)
        with torch.no_grad():
            query_embeddings = model.encode([query], instruction=query_prefix, max_length=max_length)
            query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
        query_embeddings = query_embeddings.cpu().numpy()
    return query_embeddings


def load_NJ_caselaw():
    if os.path.exists("/scratch/gpfs/ds8100/datasets/NJ_opinions_modernbert_splitter.jsonl"):
        df = pd.read_json("/scratch/gpfs/ds8100/datasets/NJ_opinions_modernbert_splitter.jsonl", lines=True)
    else:
        df = pd.read_json("NJ_opinions_modernbert_splitter.jsonl", lines=True)
    titles, chunks = [],[]

    for i, row in df.iterrows():
        texts = [i for i in row["texts"] if len(i.split()) > 25 and len(i.split()) < 750]
        texts = [" ".join(i.strip().split()) for i in texts]
        chunks.extend(texts)
        titles.extend([row["id"]] * len(texts))
    ids = list(range(len(titles)))
    assert len(ids) == len(titles) == len(chunks)
    return ids, titles, chunks


def run_retrieval(query):
    query = " ".join(query.split())
    print ("query", query)

    query_embeddings = run_dense_retrieval(query)
    D, I = faiss_index.search(query_embeddings, 45)
    scores_embeddings = D[0]
    indices_embeddings = I[0]

    results = [{"index":i, "NV_score":j, "text": chunks[i]} for i,j in zip(indices_embeddings, scores_embeddings)]

    out_dict = []
    covered = set()
    for item in results:
        index = item["index"]
        item["query"] = query
        item["opinion_idx"] = str(titles[index])

        # only recover one paragraph / opinion
        if item["opinion_idx"] in covered:
            continue
        covered.add(item["opinion_idx"])

        if item["opinion_idx"] in metadata:
            item["meta_data"] = format_metadata_as_str(metadata[item["opinion_idx"]])
        else:
            item["meta_data"] = ""        
        out_dict.append(item)
    return out_dict


NUM_RESULTS = 5
model_name = 'nvidia/NV-Embed-v2' 

device = torch.device("cuda")

extractive_qa = pipeline("question-answering", model="ai-law-society-lab/extractive-qa-model", tokenizer="FacebookAI/roberta-large", device_map="auto", token=os.getenv('hf_token'))
ids, titles, chunks = load_NJ_caselaw()

ds = load_dataset("ai-law-society-lab/NJ_embeddings", token=os.getenv('hf_token'))["train"]
ds = ds.with_format("np")
faiss_index = load_faiss_index(ds["embeddings"])


with open("NJ_caselaw_metadata.json") as f:
    metadata = json.load(f)
 

def load_embeddings_model(model_name = "intfloat/e5-large-v2"):
    if "NV" in model_name:
        model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
        #model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")        
        model.eval()
        return model

if "NV" in model_name:
    model = load_embeddings_model(model_name=model_name)


examples = ["Can officers always order a passenger out of a car?"]

css = """
.svelte-i3tvor {visibility: hidden}
.row.svelte-hrj4a0.unequal-height {
    align-items: stretch !important
}
"""

with gr.Blocks(css=css, theme = gr.themes.Monochrome(primary_hue="pink",)) as demo:
    chatbot = gr.Chatbot(height="45vw", autoscroll=False)
    query_textbox = gr.Textbox()
    #rerank_instruction = gr.Textbox(label="Rerank Instruction Prompt", value="If not otherwise specified in the query, prioritize Supreme Court opinions or opinions from higher courts. More recent, highly cited and published documents should also be weighted higher, unless otherwise specified in the query.")
    examples = gr.Examples(examples, query_textbox)
    response_json = gr.JSON(visible=False, value=[])
    print (response_json)
    chatbot.like(mark_like, response_json, response_json) 

    feedback_textbox = gr.Textbox(label="Additional feedback?", visible=False)
    next_button = gr.Button(value="Submit Feedback", visible=False)

    query_textbox.submit(show_user_query, [query_textbox, chatbot], [query_textbox, chatbot], queue=False).then(
        respond_user_query, chatbot, [chatbot, response_json]).then(
        switch_to_reviewing_framework, None, [query_textbox, examples.dataset, feedback_textbox, next_button]
    ) 

    # Handle page reset and review save in database
    next_button.click(register_review, [chatbot, feedback_textbox, response_json], None).then(
        reset_interface, None, [query_textbox, next_button, feedback_textbox, chatbot, response_json, examples.dataset])

# Launch application
demo.launch()