dominiks commited on
Commit
020f793
·
verified ·
1 Parent(s): 5a41849

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -5
app.py CHANGED
@@ -18,6 +18,7 @@ from huggingface_hub import hf_hub_download
18
  from contextual import ContextualAI
19
  from openai import AzureOpenAI
20
  from datetime import datetime
 
21
 
22
  """
23
  # to switch:
@@ -328,6 +329,7 @@ def run_retrieval(query):
328
  """
329
  start_time = time.time()
330
  query_embeddings = run_dense_retrieval(query)
 
331
  print("--- Nvidia Embedding: %s seconds ---" % (time.time() - start_time))
332
  D, I = faiss_index.search(query_embeddings, 45)
333
  print("--- Faiss retrieval: %s seconds ---" % (time.time() - start_time))
@@ -362,7 +364,7 @@ def run_retrieval(query):
362
  out_dict.append(tmp)
363
  print (out_dict)
364
  # and now, rerank
365
- out_dict = rerank_with_contextual_AI(out_dict)
366
  return out_dict
367
 
368
 
@@ -376,10 +378,20 @@ device = torch.device("cuda")
376
  extractive_qa = pipeline("question-answering", model="ai-law-society-lab/extractive-qa-model", tokenizer="FacebookAI/roberta-large", device_map="auto", token=os.getenv('hf_token'))
377
  ids, titles, chunks = load_NJ_caselaw()
378
 
379
- ds = load_dataset("ai-law-society-lab/NJ_embeddings", token=os.getenv('hf_token'))["train"]
380
- ds = ds.with_format("np")
381
- print (ds)
382
- faiss_index = load_faiss_index(ds["embeddings"])
 
 
 
 
 
 
 
 
 
 
383
 
384
  with open("NJ_caselaw_metadata.json") as f:
385
  metadata = json.load(f)
@@ -389,6 +401,7 @@ with open("NJ_caselaw_metadata.json") as f:
389
  def load_embeddings_model(model_name = "intfloat/e5-large-v2"):
390
  if "NV" in model_name:
391
  model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
 
392
  model.eval()
393
  return model
394
 
 
18
  from contextual import ContextualAI
19
  from openai import AzureOpenAI
20
  from datetime import datetime
21
+ import sys
22
 
23
  """
24
  # to switch:
 
329
  """
330
  start_time = time.time()
331
  query_embeddings = run_dense_retrieval(query)
332
+ np.save("test_query_embeddings", query_embeddings)
333
  print("--- Nvidia Embedding: %s seconds ---" % (time.time() - start_time))
334
  D, I = faiss_index.search(query_embeddings, 45)
335
  print("--- Faiss retrieval: %s seconds ---" % (time.time() - start_time))
 
364
  out_dict.append(tmp)
365
  print (out_dict)
366
  # and now, rerank
367
+ #out_dict = rerank_with_contextual_AI(out_dict)
368
  return out_dict
369
 
370
 
 
378
  extractive_qa = pipeline("question-answering", model="ai-law-society-lab/extractive-qa-model", tokenizer="FacebookAI/roberta-large", device_map="auto", token=os.getenv('hf_token'))
379
  ids, titles, chunks = load_NJ_caselaw()
380
 
381
+ #@profile
382
+ def profiling_faiss_index():
383
+ ds = load_dataset("ai-law-society-lab/NJ_embeddings", token=os.getenv('hf_token'))["train"]
384
+ print (sys.getsizeof(ds))
385
+ ds = ds.with_format("np")
386
+ print (sys.getsizeof(ds))
387
+ print (ds)
388
+ #faiss_index = load_faiss_index(ds["embeddings"])
389
+ ds.add_faiss_index(column='embeddings')
390
+ #print (sys.getsizeof(faiss_index))
391
+
392
+ return ds
393
+ faiss_index = profiling_faiss_index()
394
+
395
 
396
  with open("NJ_caselaw_metadata.json") as f:
397
  metadata = json.load(f)
 
401
  def load_embeddings_model(model_name = "intfloat/e5-large-v2"):
402
  if "NV" in model_name:
403
  model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
404
+ #model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
405
  model.eval()
406
  return model
407