import gradio as gr import spaces import torch import sys import traceback from diffusers import AutoencoderKL, TCDScheduler from diffusers.models.model_loading_utils import load_state_dict from gradio_imageslider import ImageSlider from huggingface_hub import hf_hub_download # Add better error handling def print_error(error_message): print("=" * 50) print(f"ERROR: {error_message}") print("-" * 50) print(traceback.format_exc()) print("=" * 50) try: from controlnet_union import ControlNetModel_Union from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline except Exception as e: print_error(f"Failed to import required modules: {e}") print("Ensure the controlnet_union and pipeline_fill_sd_xl modules are available") sys.exit(1) MODELS = { "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", } # Replace the problematic translation model with a simpler function def translate_if_korean(text): # Just log that Korean was detected but return the original text if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in text): print(f"Korean text detected: {text}") print("Translation is disabled - using original text") return text # Wrap with try/except to catch any model loading errors try: config_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="config_promax.json", ) config = ControlNetModel_Union.load_config(config_file) controlnet_model = ControlNetModel_Union.from_config(config) model_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="diffusion_pytorch_model_promax.safetensors", ) except Exception as e: print_error(f"Failed to load model configuration: {e}") print("Attempting to use direct model loading as fallback...") # We'll set these to None to indicate failure, and handle it below config_file = None config = None controlnet_model = None model_file = None state_dict = load_state_dict(model_file) # Fix for the _load_pretrained_model method # We need to handle the case where the method signature might have changed try: # Try the original approach first model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" ) except TypeError: # If it fails due to missing 'loaded_keys' argument # We'll try a more compatible approach print("Using alternative model loading approach...") # Try the updated method signature (includes loaded_keys) # First get the keys from the state dict loaded_keys = list(state_dict.keys()) try: model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0", loaded_keys ) except Exception as e: print(f"Advanced loading failed: {e}") print("Falling back to direct loading...") # As a last resort, try to load the model directly try: # Just load the model directly controlnet_model.load_state_dict(state_dict) model = controlnet_model except Exception as load_err: print(f"Direct loading failed: {load_err}") # Final fallback: try to initialize from pretrained model = ControlNetModel_Union.from_pretrained( "xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16 ) # Convert model to GPU with float16 model.to(device="cuda", dtype=torch.float16) # Define flag to track if we're in fallback mode (no controlnet) using_fallback = False try: # Try to load the VAE vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ).to("cuda") # Set up the pipeline with controlnet if available if model is not None: pipe = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, controlnet=model, variant="fp16", ).to("cuda") else: # Fallback to regular StableDiffusionXLPipeline if controlnet failed print("Loading without ControlNet as fallback") using_fallback = True from diffusers import StableDiffusionXLPipeline pipe = StableDiffusionXLPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, variant="fp16", ).to("cuda") # Set scheduler pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) except Exception as e: print_error(f"Failed to initialize pipeline: {e}") # If we get here, we couldn't load even the fallback pipeline # We'll define a dummy fill_image function below that just returns the input image @spaces.GPU def fill_image(prompt, image, model_selection): # Check if we're in fallback mode (no ControlNet) global using_fallback # Get the translated prompt translated_prompt = translate_if_korean(prompt) try: # Extract the source image and mask source = image["background"] mask = image["layers"][0] # Create a binary mask from the alpha channel alpha_channel = mask.split()[3] binary_mask = alpha_channel.point(lambda p: p > 0 and 255) # Handle based on whether we're using regular pipeline or ControlNet if using_fallback: # Using regular StableDiffusionXLPipeline without ControlNet print("Using fallback pipeline without ControlNet") # For fallback mode, we'll just use the regular pipeline # and inpaint as best we can try: # Generate a new image based on the prompt generated = pipe( prompt=translated_prompt, negative_prompt="low quality, worst quality, bad anatomy, bad composition, poor, low effort", num_inference_steps=30, guidance_scale=7.5, ).images[0] # Composite the generated image into the masked area result = source.copy() result.paste(generated, (0, 0), binary_mask) # Return both the original and the result yield source, result except Exception as e: print_error(f"Fallback generation failed: {e}") # If even this fails, just return the source image yield source, source else: # Normal operation with ControlNet # Prepare the controlnet input image cnet_image = source.copy() cnet_image.paste(0, (0, 0), binary_mask) # Encode the prompt ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(translated_prompt, "cuda", True) # Generate the image for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, ): yield image, cnet_image # Composite the final result image = image.convert("RGBA") cnet_image.paste(image, (0, 0), binary_mask) yield source, cnet_image except Exception as e: print_error(f"Error during image generation: {e}") # Return the original image in case of error if 'source' in locals(): yield source, source else: print("Critical error: Source image not available") # Create a blank image if we can't get the source from PIL import Image blank = Image.new('RGB', (512, 512), color=(255, 255, 255)) yield blank, blank def clear_result(): return gr.update(value=None) css = """ footer { visibility: hidden; } .sample-image { display: flex; justify-content: center; margin-top: 20px; } """ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: with gr.Row(): with gr.Column(): prompt = gr.Textbox( label="Prompt", info="Describe what to fill in the mask area (Korean or English)", lines=3, ) with gr.Column(): model_selection = gr.Dropdown( choices=list(MODELS.keys()), value="RealVisXL V5.0 Lightning", label="Model", ) run_button = gr.Button("Generate") with gr.Row(): input_image = gr.ImageMask( type="pil", label="Input Image", crop_size=(1024, 1024), layers=False ) result = ImageSlider( interactive=False, label="Generated Image", ) use_as_input_button = gr.Button("Use as Input Image", visible=False) # Add sample image with gr.Row(elem_classes="sample-image"): sample_image = gr.Image("sample.png", label="Sample Image", height=256, width=256) def use_output_as_input(output_image): return gr.update(value=output_image[1]) use_as_input_button.click( fn=use_output_as_input, inputs=[result], outputs=[input_image] ) run_button.click( fn=clear_result, inputs=None, outputs=result, ).then( fn=lambda: gr.update(visible=False), inputs=None, outputs=use_as_input_button, ).then( fn=fill_image, inputs=[prompt, input_image, model_selection], outputs=result, ).then( fn=lambda: gr.update(visible=True), inputs=None, outputs=use_as_input_button, ) prompt.submit( fn=clear_result, inputs=None, outputs=result, ).then( fn=lambda: gr.update(visible=False), inputs=None, outputs=use_as_input_button, ).then( fn=fill_image, inputs=[prompt, input_image, model_selection], outputs=result, ).then( fn=lambda: gr.update(visible=True), inputs=None, outputs=use_as_input_button, ) demo.launch(share=False)