Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(
|
8 |
+
"universitytehran/PersianMind-v1.0",
|
9 |
+
torch_dtype=torch.bfloat16,
|
10 |
+
low_cpu_mem_usage=True,
|
11 |
+
device_map={"": device},
|
12 |
+
)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("universitytehran/PersianMind-v1.0")
|
14 |
+
|
15 |
+
# Conversation template
|
16 |
+
TEMPLATE = "{context}\nYou: {prompt}\nPersianMind: "
|
17 |
+
CONTEXT = "This is a conversation with PersianMind. It is an artificial intelligence model designed by a team of " \
|
18 |
+
"NLP experts at the University of Tehran to help you with various tasks such as answering questions, " \
|
19 |
+
"providing recommendations, and helping with decision making. You can ask it anything you want and " \
|
20 |
+
"it will do its best to give you accurate and relevant information."
|
21 |
+
|
22 |
+
# Streamlit app
|
23 |
+
st.title("PersianMind Chat")
|
24 |
+
st.markdown("Chat with **PersianMind**, an AI model by the University of Tehran.")
|
25 |
+
|
26 |
+
# User input
|
27 |
+
prompt = st.text_input("Enter your question (in Persian):")
|
28 |
+
|
29 |
+
if st.button("Get Response"):
|
30 |
+
if prompt.strip():
|
31 |
+
with st.spinner("Generating response..."):
|
32 |
+
model_input = TEMPLATE.format(context=CONTEXT, prompt=prompt)
|
33 |
+
input_tokens = tokenizer(model_input, return_tensors="pt").to(device)
|
34 |
+
generate_ids = model.generate(**input_tokens, max_new_tokens=512, do_sample=False, repetition_penalty=1.1)
|
35 |
+
model_output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
36 |
+
response = model_output[len(model_input):]
|
37 |
+
|
38 |
+
st.text_area("PersianMind's Response:", response, height=200)
|
39 |
+
else:
|
40 |
+
st.warning("Please enter a question.")
|