vCLR / app.py
allencbzhang's picture
Update app.py
34cbd22 verified
raw
history blame contribute delete
2.74 kB
import spaces
import os
import gradio as gr
import shutil
import sys
import subprocess
import shlex
import torch
os.system("pip install git+https://github.com/facebookresearch/detectron2.git")
os.system("git clone https://github.com/Visual-AI/vCLR.git && cd vCLR && rm -f requirements.txt && cd .. && cp deformable_train_voc_eval_nonvoc.py vCLR/projects/vCLR_deformable_mask/configs/dino-resnet/")
subprocess.run(
shlex.split(
"pip install detrex-0.3.0-cp310-cp310-linux_x86_64.whl"
)
)
sys.path.append("vCLR/")
from demo.predictors import VisualizationDemo
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import LazyConfig, instantiate
import numpy as np
from PIL import Image
if __name__ == "__main__":
gr.close_all()
cfg = LazyConfig.load("vCLR/projects/vCLR_deformable_mask/configs/dino-resnet/deformable_train_voc_eval_nonvoc.py")
cfg["model"].device = "cuda"
cfg["train"].device = "cuda"
# @spaces.GPU(duration=40, progress=gr.Progress(track_tqdm=True))
# def
model = instantiate(cfg.model)
checkpointer = DetectionCheckpointer(model)
# checkpointer.load("https://huggingface.co/allencbzhang/vCLR/resolve/main/vCLR_deformable_train_on_voc.pth")
checkpointer.load("https://huggingface.co/allencbzhang/vCLR/resolve/main/vCLR_deformable_train_on_coco.pth")
model.eval()
model.cuda()
vis_demo = VisualizationDemo(
model=model,
min_size_test=800,
max_size_test=1333,
img_format="RGB",
metadata_dataset="coco_2017_val",
)
@spaces.GPU
def inference(img, confidence):
img = np.array(img)
_, results = vis_demo.run_on_image(img, confidence)
results = Image.fromarray(results.get_image()[:, :, ::-1])
return results
demo = gr.Interface(
fn=inference,
inputs=[
gr.Image(type="pil", image_mode="RGB"),
# gr.Number(precision=2, minimum=0.0, maximum=1.0, value=0.5)
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence")
],
outputs="image",
examples=[
],
title="[CVPR 2025 highlight] v-CLR: View-Consistent Learning for Open-World Instance Segmentation",
description='''
[![Paper](https://img.shields.io/badge/arXiv-2412.10028-red)](https://arxiv.org/abs/2412.10028)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/mr-detr-instructive-multi-route-training-for/object-detection-on-coco-2017-val)](https://paperswithcode.com/sota/object-detection-on-coco-2017-val?p=mr-detr-instructive-multi-route-training-for)
'''
)
demo.launch()