aquibmoin's picture
Update app.py
c0be908 verified
raw
history blame contribute delete
15.7 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModel
from openai import OpenAI
import os
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import io
import pandas as pd
from pinecone import Pinecone
#import logging
import re
from utils.ads_references import extract_keywords_with_gpt, fetch_nasa_ads_references
from utils.data_insights import fetch_exoplanet_data, generate_data_insights
from utils.gen_doc import export_to_word
from utils.extract_table import extract_table_from_response, gpt_response_to_dataframe
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
llm = ChatOpenAI(model="gpt-4o")
embeddings = OpenAIEmbeddings()
from ragas import EvaluationDataset
from ragas import evaluate
from ragas.llms import LangchainLLMWrapper
evaluator_llm = LangchainLLMWrapper(llm)
from ragas.metrics import LLMContextRecall, ContextRelevance, Faithfulness, ResponseRelevancy, FactualCorrectness
# Load the NASA-specific bi-encoder model and tokenizer
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)
# Set up OpenAI client
api_key = os.getenv('OPENAI_API_KEY')
client = OpenAI(api_key=api_key)
# Pinecone setup
pinecone_api_key = os.getenv('PINECONE_API_KEY')
pc = Pinecone(api_key=pinecone_api_key)
index_name = "scdd-index"
index = pc.Index(index_name)
# Define system message with instructions
system_message = """
You are ExosAI, an advanced assistant specializing in Exoplanet and Astrophysics research.
Generate a **detailed and structured** response based on the given **retrieved context and user input**, incorporating key **observables, physical parameters, and technical requirements**. Organize the response into the following sections:
1. **Science Objectives**: Define key scientific objectives related to the science context and user input.
2. **Physical Parameters**: Outline the relevant physical parameters (e.g., mass, temperature, composition).
3. **Observables**: Specify the key observables required to study the science context.
4. **Description of Desired Observations**: Detail the observational techniques, instruments, or approaches necessary to gather relevant data.
5. **Observations Requirements Table**: Generate a table relevant to the Science Objectives, Physical Parameters, Observables and Description of Desired Observations with the following columns and at least 7 rows:
- Wavelength Band: Should only be UV, Visible and Infrared).
- Instrument: Should only be Imager, Spectrograph, Polarimeter and Coronagraph).
- Necessary Values: The necessary values or parameters (wavelength range, spectral resolution where applicable, spatial resolution where applicable, contrast ratio where applicable).
- Desired Values: The desired values or parameters (wavelength range, spectral resolution where applicable, spatial resolution where applicable).
- Number of Objects Observed: Estimate the number of objects that need to be observed for a statistically meaningful result or for fulfilling the science objective.
- Justification: Detailed scientific explanation of why these observations are important for the science objectives.
- Comments: Additional notes or remarks regarding each observation.
#### **Table Format**
| Wavelength Band | Instrument | Necessary Values | Desired Values | Number of Objects Observed | Justification | Comments |
|----------------------|------------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------------|----------|
#### **Guiding Constraints (Exclusions & Prioritization)**
- **Wavelength Band Restriction:** Only include **UV, Visible, and Infrared** bands.
- **Instrument Restriction:** Only include **Imager, Spectrograph, Polarimeter, and Coronagraph**.
- **Wavelength Limits:** Prioritize wavelengths between **100 nanometers (nm) and 3 micrometers (μm)**.
- **Allowed Instruments:** **Only include** observations from **direct imaging, spectroscopy, and polarimetry.** **Exclude** transit and radial velocity methods.
- **Exclusion of Existing Facilities:** **Do not reference** existing observatories such as JWST, Hubble, or ground-based telescopes. This work pertains to a **new mission**.
- **Spectral Resolution Constraint:** come up with an appropriate spectral resolution (**R**) depending on the requirements **.
- **Contrast Ratio:** come up with an appropriate contrast ratio depending on the requirements **.
- **Estimate the "Number of Objects Observed" based on the observational strategy, parameters, instruments, statistical requirements, and feasibility.**
- **Ensure that all parameters remain scientifically consistent.**
- **Include inline references in the Justification column wherever available **.
- **Pay close attention to the retrieved context**.
**Use this table format as a guideline, generate a detailed table dynamically based on the input.**. Ensure that all values align with the provided constraints and instructions.
**Include inline references wherever available**. Especially in the Justification column.
Ensure the response is **structured, clear, and observation requirements table follows this format**. **All included parameters must be scientifically consistent with each other.**
"""
# Function to encode query text
def encode_query(text):
inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
outputs = bi_model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten()
embedding /= np.linalg.norm(embedding)
return embedding.tolist()
# Context retrieval function using Pinecone
def retrieve_relevant_context(user_input, context_text, science_objectives="", top_k=5):
query_text = f"Science Goal: {user_input}\nContext: {context_text}\nScience Objectives: {science_objectives}" if science_objectives else f"Science Goal: {user_input}\nContext: {context_text}"
query_embedding = encode_query(query_text)
# Pinecone query
query_response = index.query(
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
retrieved_context = "\n\n".join([match['metadata']['text'] for match in query_response.matches])
if not retrieved_context.strip():
return "No relevant context found for the query."
return retrieved_context
def clean_retrieved_context(raw_context):
# Remove unnecessary line breaks within paragraphs
cleaned = raw_context.replace("-\n", "").replace("\n", " ")
# Remove extra spaces clearly
cleaned = re.sub(r'\s+', ' ', cleaned)
# Return explicitly cleaned context
return cleaned.strip()
def generate_response(user_input, science_objectives="", relevant_context="", references=[], max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
# Case 1: Both relevant context and science objectives are provided
if relevant_context and science_objectives.strip():
combined_input = f"Scientific Context: {relevant_context}\nUser Input: {user_input}\nScience Objectives (User Provided): {science_objectives}\n\nPlease generate only the remaining sections as per the defined format."
# Case 2: Only relevant context is provided
elif relevant_context:
combined_input = f"Scientific Context: {relevant_context}\nUser Input: {user_input}\n\nPlease generate a full structured response, including Science Objectives."
# Case 3: Neither context nor science objectives are provided
elif science_objectives.strip():
combined_input = f"User Input: {user_input}\nScience Objectives (User Provided): {science_objectives}\n\nPlease generate only the remaining sections as per the defined format."
# Default: No relevant context or science objectives → Generate everything
else:
combined_input = f"User Input: {user_input}\n\nPlease generate a full structured response, including Science Objectives."
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": combined_input}
],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty
)
response_only = response.choices[0].message.content.strip()
# ADS References appended separately
references_text = ""
if references:
references_text = "\n\nADS References:\n" + "\n".join(
[f"- {title} {authors} (Bibcode: {bibcode}) {pub} {pubdate}"
for title, abstract, authors, bibcode, pub, pubdate in references])
# Full response (for Gradio display)
full_response = response_only + references_text
# Return two clearly separated responses
return full_response, response_only
def chatbot(user_input, science_objectives="", context="", subdomain="", max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
yield "🔄 Connecting with Pinecone...", None, None, None, None, None, None
pc_index_name = "scdd-index"
yield f"Using Pinecone index: **{index_name}**✅ ", None, None, None, None, None, None
yield "🔎 Retrieving relevant context from Pinecone...", None, None, None, None, None, None
# Retrieve relevant context using Pinecone
relevant_context = retrieve_relevant_context(user_input, context, science_objectives)
cleaned_context_list = [clean_retrieved_context(chunk) for chunk in relevant_context]
yield "Context Retrieved successfully ✅ ", None, None, None, None, None, None, None
keywords = extract_keywords_with_gpt(context, client)
ads_query = " ".join(keywords)
# Fetch NASA ADS references using the user context
references = fetch_nasa_ads_references(ads_query)
yield "ADS references retrieved... ✅ ", None, None, None, None, None, None, None
yield "🔄 Generating structured response using GPT-4o...", None, None, None, None, None, None
# Generate response from GPT-4
full_response, response_only = generate_response(
user_input=user_input,
science_objectives=science_objectives,
relevant_context=relevant_context,
references=references,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty
)
# RAGAS Evaluation
context_ragas = cleaned_context_list
response_ragas = response_only
query_ragas = user_input + context
reference_ragas = "\n\n".join([f"{title}\n{abstract}" for title, abstract, _, _, _, _ in references])
dataset = []
dataset.append(
{
"user_input":query_ragas,
"retrieved_contexts":context_ragas,
"response":response_ragas,
"reference": "\n\n".join(context_ragas)
}
)
evaluation_dataset = EvaluationDataset.from_list(dataset)
ragas_evaluation = evaluate(dataset=evaluation_dataset,metrics=[LLMContextRecall(), ContextRelevance(), Faithfulness(), ResponseRelevancy(), FactualCorrectness(coverage="low",atomicity="low")],llm=evaluator_llm, embeddings=embeddings)
yield "Response generated successfully ✅ ", None, None, None, None, None, None
# Append user-defined science objectives if provided
if science_objectives.strip():
full_response = f"### Science Objectives (User-Defined):\n\n{science_objectives}\n\n" + full_response
# Export response to Word
word_doc_path = export_to_word(
full_response, subdomain, user_input, context,
max_tokens, temperature, top_p, frequency_penalty, presence_penalty
)
yield "Writing SCDD...Performing RAGAS Evaluation...", None, None, None, None, None, None
# Fetch exoplanet data and generate insights
exoplanet_data = fetch_exoplanet_data()
data_insights_uq = generate_data_insights(user_input, client, exoplanet_data)
# Extract GPT-generated table into DataFrame
extracted_table_df = gpt_response_to_dataframe(full_response)
# Combine response and insights
full_response = f"{full_response}\n\nEnd of Response"
yield "SCDD produced successfully ✅", None, None, None, None, None, None
iframe_html = """<iframe width=\"768\" height=\"432\" src=\"https://miro.com/app/live-embed/uXjVKuVTcF8=/?moveToViewport=-331,-462,5434,3063&embedId=710273023721\" frameborder=\"0\" scrolling=\"no\" allow=\"fullscreen; clipboard-read; clipboard-write\" allowfullscreen></iframe>"""
mapify_button_html = """<a href=\"https://mapify.so/app/new\" target=\"_blank\"><button>Create Mind Map on Mapify</button></a>"""
yield full_response, relevant_context, ragas_evaluation, extracted_table_df, word_doc_path, iframe_html, mapify_button_html
with gr.Blocks() as demo:
gr.Markdown("# **ExosAI - NASA SMD PCRAG SCDD Generator [version-2.1]**")
gr.Markdown("## **User Inputs**")
user_input = gr.Textbox(lines=5, placeholder="Enter your Science Goal...", label="Science Goal")
context = gr.Textbox(lines=10, placeholder="Enter Context Text...", label="Additional Context")
subdomain = gr.Textbox(lines=2, placeholder="Define your Subdomain...", label="Subdomain Definition")
science_objectives_button = gr.Button("User-defined Science Objectives [Optional]")
science_objectives_input = gr.Textbox(lines=5, placeholder="Enter Science Objectives...", label="Science Objectives", visible=False)
science_objectives_button.click(lambda: gr.update(visible=True), outputs=[science_objectives_input])
gr.Markdown("### **Model Parameters**")
max_tokens = gr.Slider(50, 2000, 150, step=10, label="Max Tokens")
temperature = gr.Slider(0.0, 1.0, 0.7, step=0.1, label="Temperature")
top_p = gr.Slider(0.0, 1.0, 0.9, step=0.1, label="Top-p")
frequency_penalty = gr.Slider(0.0, 1.0, 0.5, step=0.1, label="Frequency Penalty")
presence_penalty = gr.Slider(0.0, 1.0, 0.0, step=0.1, label="Presence Penalty")
gr.Markdown("## **Model Outputs**")
full_response = gr.Textbox(label="ExosAI SCDD Generation...")
relevant_context = gr.Textbox(label="Retrieved Context...")
ragas_evaluation = gr.Textbox(label="RAGAS Evaluation...")
extracted_table_df = gr.Dataframe(label="SC Requirements Table")
word_doc_path = gr.File(label="Download SCDD")
iframe_html = gr.HTML(label="Miro")
mapify_button_html = gr.HTML(label="Generate Mind Map on Mapify")
with gr.Row():
submit_button = gr.Button("Generate SCDD")
clear_button = gr.Button("Reset")
submit_button.click(chatbot, inputs=[user_input, science_objectives_input, context, subdomain, max_tokens, temperature, top_p, frequency_penalty, presence_penalty], outputs=[full_response, relevant_context, ragas_evaluation, extracted_table_df, word_doc_path, iframe_html, mapify_button_html],queue=True)
clear_button.click(lambda: ("", "", "", "", 150, 0.7, 0.9, 0.5, 0.0, "", "", None, None, None, None, None), outputs=[user_input, science_objectives_input, context, subdomain, max_tokens, temperature, top_p, frequency_penalty, presence_penalty, full_response, relevant_context, ragas_evaluation, extracted_table_df, word_doc_path, iframe_html, mapify_button_html])
demo.launch(share=True)