Update app.py
Browse files
app.py
CHANGED
@@ -96,7 +96,7 @@ def encode_query(text):
|
|
96 |
|
97 |
|
98 |
# Context retrieval function using Pinecone
|
99 |
-
def retrieve_relevant_context(user_input, context_text, science_objectives="", top_k=
|
100 |
query_text = f"Science Goal: {user_input}\nContext: {context_text}\nScience Objectives: {science_objectives}" if science_objectives else f"Science Goal: {user_input}\nContext: {context_text}"
|
101 |
query_embedding = encode_query(query_text)
|
102 |
|
@@ -231,7 +231,7 @@ def chatbot(user_input, science_objectives="", context="", subdomain="", max_tok
|
|
231 |
|
232 |
evaluation_dataset = EvaluationDataset.from_list(dataset)
|
233 |
|
234 |
-
ragas_evaluation = evaluate(dataset=evaluation_dataset,metrics=[LLMContextRecall(), ContextRelevance(), Faithfulness(), ResponseRelevancy(), FactualCorrectness(coverage="
|
235 |
|
236 |
yield "Response generated successfully ✅ ", None, None, None, None, None, None
|
237 |
|
|
|
96 |
|
97 |
|
98 |
# Context retrieval function using Pinecone
|
99 |
+
def retrieve_relevant_context(user_input, context_text, science_objectives="", top_k=5):
|
100 |
query_text = f"Science Goal: {user_input}\nContext: {context_text}\nScience Objectives: {science_objectives}" if science_objectives else f"Science Goal: {user_input}\nContext: {context_text}"
|
101 |
query_embedding = encode_query(query_text)
|
102 |
|
|
|
231 |
|
232 |
evaluation_dataset = EvaluationDataset.from_list(dataset)
|
233 |
|
234 |
+
ragas_evaluation = evaluate(dataset=evaluation_dataset,metrics=[LLMContextRecall(), ContextRelevance(), Faithfulness(), ResponseRelevancy(), FactualCorrectness(coverage="low",atomicity="low")],llm=evaluator_llm, embeddings=embeddings)
|
235 |
|
236 |
yield "Response generated successfully ✅ ", None, None, None, None, None, None
|
237 |
|