Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import fitz # PyMuPDF for extracting text from PDFs
|
|
3 |
from transformers import AutoTokenizer, AutoModel
|
4 |
import torch
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
-
|
7 |
|
8 |
# Load the NASA-specific bi-encoder model and tokenizer
|
9 |
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
|
@@ -18,8 +18,8 @@ def extract_text_from_pdf(pdf_file):
|
|
18 |
text += page.get_text() # Extract text from each page
|
19 |
return text
|
20 |
|
21 |
-
# Function to generate embeddings
|
22 |
-
def
|
23 |
# Tokenize the text and create input tensors
|
24 |
inputs = bi_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
25 |
|
@@ -31,14 +31,10 @@ def generate_embedding(text):
|
|
31 |
# Mean pooling to get the final embedding for the text
|
32 |
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
# Reshape the embeddings and calculate cosine similarity
|
39 |
-
embedding1 = embedding1.reshape(1, -1)
|
40 |
-
embedding2 = embedding2.reshape(1, -1)
|
41 |
-
return cosine_similarity(embedding1, embedding2)[0][0]
|
42 |
|
43 |
# Function to handle the full workflow: extract text, generate embeddings, and compute similarity
|
44 |
def compare_pdfs(pdf1, pdf2):
|
@@ -46,20 +42,31 @@ def compare_pdfs(pdf1, pdf2):
|
|
46 |
text1 = extract_text_from_pdf(pdf1)
|
47 |
text2 = extract_text_from_pdf(pdf2)
|
48 |
|
49 |
-
# Generate embeddings
|
50 |
-
embedding1 =
|
51 |
-
embedding2 =
|
52 |
|
53 |
# Compute cosine similarity between the two embeddings
|
54 |
similarity_score = compute_cosine_similarity(embedding1, embedding2)
|
55 |
-
|
56 |
-
# Return the similarity score
|
57 |
-
return f"The cosine similarity between the two PDF documents is: {similarity_score:.4f}"
|
58 |
|
59 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
inputs = [gr.File(label="Upload Human SCDD"), gr.File(label="Upload AI SCDD")]
|
61 |
-
outputs =
|
|
|
|
|
|
|
|
|
62 |
|
63 |
# Set up the Gradio interface
|
64 |
gr.Interface(fn=compare_pdfs, inputs=inputs, outputs=outputs, title="AI-Human SCDD Similarity Checker with NASA Bi-Encoder").launch()
|
65 |
|
|
|
|
3 |
from transformers import AutoTokenizer, AutoModel
|
4 |
import torch
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import numpy as np
|
7 |
|
8 |
# Load the NASA-specific bi-encoder model and tokenizer
|
9 |
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
|
|
|
18 |
text += page.get_text() # Extract text from each page
|
19 |
return text
|
20 |
|
21 |
+
# Function to generate embeddings and return dimensions
|
22 |
+
def generate_embedding_with_dim(text):
|
23 |
# Tokenize the text and create input tensors
|
24 |
inputs = bi_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
25 |
|
|
|
31 |
# Mean pooling to get the final embedding for the text
|
32 |
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
33 |
|
34 |
+
# Get the number of dimensions
|
35 |
+
embedding_dim = embedding.shape[0]
|
36 |
+
|
37 |
+
return embedding, f"Embedding Dimensions: {embedding_dim}"
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Function to handle the full workflow: extract text, generate embeddings, and compute similarity
|
40 |
def compare_pdfs(pdf1, pdf2):
|
|
|
42 |
text1 = extract_text_from_pdf(pdf1)
|
43 |
text2 = extract_text_from_pdf(pdf2)
|
44 |
|
45 |
+
# Generate embeddings and get their dimensions
|
46 |
+
embedding1, dim1 = generate_embedding_with_dim(text1)
|
47 |
+
embedding2, dim2 = generate_embedding_with_dim(text2)
|
48 |
|
49 |
# Compute cosine similarity between the two embeddings
|
50 |
similarity_score = compute_cosine_similarity(embedding1, embedding2)
|
|
|
|
|
|
|
51 |
|
52 |
+
# Return similarity score + embedding dimensions
|
53 |
+
return f"The cosine similarity between the two PDFs is: {similarity_score:.4f}", dim1, dim2
|
54 |
+
|
55 |
+
# Function to compute the cosine similarity between two embeddings
|
56 |
+
def compute_cosine_similarity(embedding1, embedding2):
|
57 |
+
embedding1 = embedding1.reshape(1, -1)
|
58 |
+
embedding2 = embedding2.reshape(1, -1)
|
59 |
+
return cosine_similarity(embedding1, embedding2)[0][0]
|
60 |
+
|
61 |
+
# Gradio interface: accept two PDFs, show similarity + embedding dimensions
|
62 |
inputs = [gr.File(label="Upload Human SCDD"), gr.File(label="Upload AI SCDD")]
|
63 |
+
outputs = [
|
64 |
+
gr.Textbox(label="Cosine Similarity Score"),
|
65 |
+
gr.Textbox(label="Embedding Dimensions (PDF 1)"),
|
66 |
+
gr.Textbox(label="Embedding Dimensions (PDF 2)")
|
67 |
+
]
|
68 |
|
69 |
# Set up the Gradio interface
|
70 |
gr.Interface(fn=compare_pdfs, inputs=inputs, outputs=outputs, title="AI-Human SCDD Similarity Checker with NASA Bi-Encoder").launch()
|
71 |
|
72 |
+
|