adding video logic
Browse files- .gitattributes +1 -0
- .gitignore +3 -0
- README.md +1 -1
- app.py +423 -126
- requirements.txt +4 -1
- video.mp4 +3 -0
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.ruff_cache
|
2 |
+
.venv
|
3 |
+
static
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: D
|
3 |
emoji: 🌖
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
|
|
1 |
---
|
2 |
+
title: Real Time Object Detection wtih D-Fine
|
3 |
emoji: 🌖
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
app.py
CHANGED
@@ -1,45 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline
|
3 |
from transformers.image_utils import load_image
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
def detect_objects(image, checkpoint, confidence_threshold=0.3, use_url=False, url=""):
|
22 |
-
pipe = pipeline(
|
23 |
-
"object-detection",
|
24 |
-
model=checkpoint,
|
25 |
-
image_processor=checkpoint,
|
26 |
-
device="cpu",
|
27 |
-
)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
if use_url and url:
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
elif image is not None:
|
|
|
|
|
|
|
32 |
input_image = image
|
33 |
else:
|
34 |
-
return None, gr.Markdown(
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
img_width, img_height = input_image.size
|
41 |
|
42 |
-
# Prepare annotations in the format: list of (bounding_box, label)
|
43 |
annotations = []
|
44 |
for result in results:
|
45 |
score = result["score"]
|
@@ -47,107 +105,315 @@ def detect_objects(image, checkpoint, confidence_threshold=0.3, use_url=False, u
|
|
47 |
continue
|
48 |
label = f"{result['label']} ({score:.2f})"
|
49 |
box = result["box"]
|
50 |
-
# Validate and convert box to (
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
if x2 <= x1 or y2 <= y1:
|
57 |
continue
|
58 |
-
bounding_box = (
|
59 |
annotations.append((bounding_box, label))
|
60 |
|
61 |
-
# Handle empty annotations
|
62 |
if not annotations:
|
63 |
return (input_image, []), gr.Markdown(
|
64 |
"**Warning**: No objects detected above the confidence threshold. Try lowering the threshold.",
|
65 |
-
visible=True
|
66 |
)
|
67 |
|
68 |
-
# Return base image and annotations
|
69 |
return (input_image, annotations), gr.Markdown(visible=False)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# Gradio interface
|
72 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
73 |
gr.Markdown(
|
74 |
"""
|
75 |
# Real-Time Object Detection Demo
|
76 |
-
Experience state-of-the-art object detection with USTC's Dfine models. Upload an image
|
77 |
-
|
78 |
-
**Instructions**:
|
79 |
-
- Upload an image or enter a URL.
|
80 |
-
- Choose a model checkpoint from the dropdown.
|
81 |
-
- Adjust the confidence threshold (0.1 to 1.0).
|
82 |
-
- Click "Detect Objects" to view results, or select an example.
|
83 |
-
- Use "Clear" to reset inputs and outputs.
|
84 |
""",
|
85 |
-
elem_classes="header-text"
|
86 |
)
|
87 |
-
|
88 |
-
with gr.
|
89 |
-
with gr.
|
90 |
-
with gr.
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
elem_classes="input-component",
|
110 |
-
)
|
111 |
-
confidence_threshold = gr.Slider(
|
112 |
-
minimum=0.1,
|
113 |
-
maximum=1.0,
|
114 |
-
value=0.3,
|
115 |
-
step=0.1,
|
116 |
-
label="Confidence Threshold",
|
117 |
-
elem_classes="input-component",
|
118 |
-
)
|
119 |
-
with gr.Row():
|
120 |
-
detect_button = gr.Button(
|
121 |
-
"Detect Objects",
|
122 |
-
variant="primary",
|
123 |
-
elem_classes="action-button",
|
124 |
)
|
125 |
-
|
126 |
-
"
|
127 |
-
variant="secondary",
|
128 |
-
elem_classes="action-button",
|
129 |
)
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
)
|
138 |
-
error_message = gr.Markdown(visible=False, elem_classes="error-text")
|
139 |
-
|
140 |
-
gr.Examples(
|
141 |
-
examples=[
|
142 |
-
["./image.jpg", False, "", checkpoints[0], 0.3],
|
143 |
-
[None, True, "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg", checkpoints[0], 0.3],
|
144 |
-
],
|
145 |
-
inputs=[image_input, use_url, url_input, checkpoint, confidence_threshold],
|
146 |
-
outputs=[output_annotated, error_message],
|
147 |
-
fn=detect_objects,
|
148 |
-
cache_examples=False, # Avoid caching due to model size
|
149 |
-
label="Select an example to run the model",
|
150 |
-
)
|
151 |
|
152 |
# Dynamic visibility for URL input
|
153 |
use_url.change(
|
@@ -156,34 +422,65 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
156 |
outputs=url_input,
|
157 |
)
|
158 |
|
159 |
-
#
|
160 |
-
|
161 |
fn=lambda: (
|
162 |
-
None,
|
163 |
-
False,
|
164 |
-
"",
|
165 |
-
|
166 |
-
|
167 |
-
None,
|
168 |
-
gr.Markdown(visible=False),
|
169 |
),
|
170 |
outputs=[
|
171 |
image_input,
|
172 |
use_url,
|
173 |
url_input,
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
],
|
179 |
)
|
180 |
|
181 |
-
#
|
182 |
-
|
183 |
fn=detect_objects,
|
184 |
-
inputs=[
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
)
|
187 |
|
188 |
if __name__ == "__main__":
|
189 |
-
demo.launch()
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from typing import Tuple, List, Optional
|
4 |
+
from pathlib import Path
|
5 |
+
import shutil
|
6 |
+
import tempfile
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
import gradio as gr
|
10 |
+
from PIL import Image
|
11 |
from transformers import pipeline
|
12 |
from transformers.image_utils import load_image
|
13 |
+
import tqdm
|
14 |
|
15 |
+
# Configuration constants
|
16 |
+
CHECKPOINTS = [
|
17 |
+
"ustc-community/dfine_m_obj365",
|
18 |
+
"ustc-community/dfine_n_coco",
|
19 |
+
"ustc-community/dfine_s_coco",
|
20 |
+
"ustc-community/dfine_m_coco",
|
21 |
+
"ustc-community/dfine_l_coco",
|
22 |
+
"ustc-community/dfine_x_coco",
|
23 |
+
"ustc-community/dfine_s_obj365",
|
24 |
+
"ustc-community/dfine_l_obj365",
|
25 |
+
"ustc-community/dfine_x_obj365",
|
26 |
+
"ustc-community/dfine_s_obj2coco",
|
27 |
+
"ustc-community/dfine_m_obj2coco",
|
28 |
+
"ustc-community/dfine_l_obj2coco_e25",
|
29 |
+
"ustc-community/dfine_x_obj2coco",
|
30 |
]
|
31 |
+
MAX_NUM_FRAMES = 300
|
32 |
+
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
|
33 |
+
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
|
34 |
+
IMAGE_EXAMPLES = [
|
35 |
+
{"path": "./image.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
36 |
+
{
|
37 |
+
"path": None,
|
38 |
+
"use_url": True,
|
39 |
+
"url": "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg",
|
40 |
+
"label": "Flickr Image",
|
41 |
+
},
|
42 |
+
]
|
43 |
+
VIDEO_EXAMPLES = [
|
44 |
+
{"path": "./video.mp4", "label": "Local Video"},
|
45 |
+
]
|
46 |
+
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
|
47 |
+
|
48 |
+
logging.basicConfig(
|
49 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
50 |
+
)
|
51 |
+
logger = logging.getLogger(__name__)
|
52 |
+
|
53 |
+
VIDEO_OUTPUT_DIR = Path("static/videos")
|
54 |
+
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
def detect_objects(
|
58 |
+
image: Optional[Image.Image],
|
59 |
+
checkpoint: str,
|
60 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
61 |
+
use_url: bool = False,
|
62 |
+
url: str = "",
|
63 |
+
) -> Tuple[
|
64 |
+
Optional[Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]],
|
65 |
+
gr.Markdown,
|
66 |
+
]:
|
67 |
if use_url and url:
|
68 |
+
try:
|
69 |
+
input_image = load_image(url)
|
70 |
+
except Exception as e:
|
71 |
+
logger.error(f"Failed to load image from URL {url}: {str(e)}")
|
72 |
+
return None, gr.Markdown(
|
73 |
+
f"**Error**: Failed to load image from URL: {str(e)}", visible=True
|
74 |
+
)
|
75 |
elif image is not None:
|
76 |
+
if not isinstance(image, Image.Image):
|
77 |
+
logger.error("Input image is not a PIL Image")
|
78 |
+
return None, gr.Markdown("**Error**: Invalid image format.", visible=True)
|
79 |
input_image = image
|
80 |
else:
|
81 |
+
return None, gr.Markdown(
|
82 |
+
"**Error**: Please provide an image or URL.", visible=True
|
83 |
+
)
|
84 |
|
85 |
+
try:
|
86 |
+
pipe = pipeline(
|
87 |
+
"object-detection",
|
88 |
+
model=checkpoint,
|
89 |
+
image_processor=checkpoint,
|
90 |
+
device="cpu",
|
91 |
+
)
|
92 |
+
except Exception as e:
|
93 |
+
logger.error(f"Failed to initialize model pipeline for {checkpoint}: {str(e)}")
|
94 |
+
return None, gr.Markdown(
|
95 |
+
f"**Error**: Failed to load model: {str(e)}", visible=True
|
96 |
+
)
|
97 |
|
98 |
+
results = pipe(input_image, threshold=confidence_threshold)
|
99 |
img_width, img_height = input_image.size
|
100 |
|
|
|
101 |
annotations = []
|
102 |
for result in results:
|
103 |
score = result["score"]
|
|
|
105 |
continue
|
106 |
label = f"{result['label']} ({score:.2f})"
|
107 |
box = result["box"]
|
108 |
+
# Validate and convert box to (xmin, ymin, xmax, ymax)
|
109 |
+
bbox_xmin = max(0, int(box["xmin"]))
|
110 |
+
bbox_ymin = max(0, int(box["ymin"]))
|
111 |
+
bbox_xmax = min(img_width, int(box["xmax"]))
|
112 |
+
bbox_ymax = min(img_height, int(box["ymax"]))
|
113 |
+
if bbox_xmax <= bbox_xmin or bbox_ymax <= bbox_ymin:
|
|
|
114 |
continue
|
115 |
+
bounding_box = (bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax)
|
116 |
annotations.append((bounding_box, label))
|
117 |
|
|
|
118 |
if not annotations:
|
119 |
return (input_image, []), gr.Markdown(
|
120 |
"**Warning**: No objects detected above the confidence threshold. Try lowering the threshold.",
|
121 |
+
visible=True,
|
122 |
)
|
123 |
|
|
|
124 |
return (input_image, annotations), gr.Markdown(visible=False)
|
125 |
|
126 |
+
|
127 |
+
def annotate_frame(
|
128 |
+
image: Image.Image, annotations: List[Tuple[Tuple[int, int, int, int], str]]
|
129 |
+
) -> np.ndarray:
|
130 |
+
image_np = np.array(image)
|
131 |
+
image_bgr = image_np[:, :, ::-1].copy() # RGB to BGR
|
132 |
+
|
133 |
+
for (xmin, ymin, xmax, ymax), label in annotations:
|
134 |
+
cv2.rectangle(image_bgr, (xmin, ymin), (xmax, ymax), (255, 255, 255), 2)
|
135 |
+
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
|
136 |
+
cv2.rectangle(
|
137 |
+
image_bgr,
|
138 |
+
(xmin, ymin - text_size[1] - 4),
|
139 |
+
(xmin + text_size[0], ymin),
|
140 |
+
(255, 255, 255),
|
141 |
+
-1,
|
142 |
+
)
|
143 |
+
cv2.putText(
|
144 |
+
image_bgr,
|
145 |
+
label,
|
146 |
+
(xmin, ymin - 4),
|
147 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
148 |
+
0.5,
|
149 |
+
(0, 0, 0),
|
150 |
+
1,
|
151 |
+
)
|
152 |
+
|
153 |
+
return image_bgr
|
154 |
+
|
155 |
+
|
156 |
+
def process_video(
|
157 |
+
video_path: str,
|
158 |
+
checkpoint: str,
|
159 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
160 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
161 |
+
) -> Tuple[Optional[str], gr.Markdown]:
|
162 |
+
if not video_path or not os.path.isfile(video_path):
|
163 |
+
logger.error(f"Invalid video path: {video_path}")
|
164 |
+
return None, gr.Markdown(
|
165 |
+
"**Error**: Please provide a valid video file.", visible=True
|
166 |
+
)
|
167 |
+
|
168 |
+
ext = os.path.splitext(video_path)[1].lower()
|
169 |
+
if ext not in ALLOWED_VIDEO_EXTENSIONS:
|
170 |
+
logger.error(f"Unsupported video format: {ext}")
|
171 |
+
return None, gr.Markdown(
|
172 |
+
f"**Error**: Unsupported video format. Use MP4, AVI, or MOV.", visible=True
|
173 |
+
)
|
174 |
+
|
175 |
+
try:
|
176 |
+
cap = cv2.VideoCapture(video_path)
|
177 |
+
if not cap.isOpened():
|
178 |
+
logger.error(f"Failed to open video: {video_path}")
|
179 |
+
return None, gr.Markdown(
|
180 |
+
"**Error**: Failed to open video file.", visible=True
|
181 |
+
)
|
182 |
+
|
183 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
184 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
185 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
186 |
+
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
187 |
+
|
188 |
+
# Use H.264 codec for browser compatibility
|
189 |
+
fourcc = cv2.VideoWriter_fourcc(*"H264")
|
190 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
191 |
+
writer = cv2.VideoWriter(temp_file.name, fourcc, fps, (width, height))
|
192 |
+
if not writer.isOpened():
|
193 |
+
logger.error("Failed to initialize video writer")
|
194 |
+
cap.release()
|
195 |
+
temp_file.close()
|
196 |
+
os.unlink(temp_file.name)
|
197 |
+
return None, gr.Markdown(
|
198 |
+
"**Error**: Failed to initialize video writer.", visible=True
|
199 |
+
)
|
200 |
+
|
201 |
+
frame_count = 0
|
202 |
+
for _ in tqdm.tqdm(
|
203 |
+
range(min(MAX_NUM_FRAMES, num_frames)), desc="Processing video"
|
204 |
+
):
|
205 |
+
ok, frame = cap.read()
|
206 |
+
if not ok:
|
207 |
+
break
|
208 |
+
rgb_frame = frame[:, :, ::-1] # BGR to RGB
|
209 |
+
pil_image = Image.fromarray(rgb_frame)
|
210 |
+
(annotated_image, annotations), _ = detect_objects(
|
211 |
+
pil_image, checkpoint, confidence_threshold, use_url=False, url=""
|
212 |
+
)
|
213 |
+
if annotated_image is None:
|
214 |
+
continue
|
215 |
+
annotated_frame = annotate_frame(annotated_image, annotations)
|
216 |
+
writer.write(annotated_frame)
|
217 |
+
frame_count += 1
|
218 |
+
|
219 |
+
writer.release()
|
220 |
+
cap.release()
|
221 |
+
|
222 |
+
if frame_count == 0:
|
223 |
+
logger.warning("No valid frames processed in video")
|
224 |
+
temp_file.close()
|
225 |
+
os.unlink(temp_file.name)
|
226 |
+
return None, gr.Markdown(
|
227 |
+
"**Warning**: No valid frames processed. Try a different video or threshold.",
|
228 |
+
visible=True,
|
229 |
+
)
|
230 |
+
|
231 |
+
temp_file.close()
|
232 |
+
|
233 |
+
# Copy to persistent directory for Gradio access
|
234 |
+
output_filename = f"output_{os.path.basename(temp_file.name)}"
|
235 |
+
output_path = VIDEO_OUTPUT_DIR / output_filename
|
236 |
+
shutil.copy(temp_file.name, output_path)
|
237 |
+
os.unlink(temp_file.name) # Remove temporary file
|
238 |
+
logger.info(f"Video saved to {output_path}")
|
239 |
+
|
240 |
+
return str(output_path), gr.Markdown(visible=False)
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
logger.error(f"Video processing failed: {str(e)}")
|
244 |
+
if "temp_file" in locals():
|
245 |
+
temp_file.close()
|
246 |
+
if os.path.exists(temp_file.name):
|
247 |
+
os.unlink(temp_file.name)
|
248 |
+
return None, gr.Markdown(
|
249 |
+
f"**Error**: Video processing failed: {str(e)}", visible=True
|
250 |
+
)
|
251 |
+
|
252 |
+
|
253 |
+
def create_image_inputs() -> List[gr.components.Component]:
|
254 |
+
return [
|
255 |
+
gr.Image(
|
256 |
+
label="Upload Image",
|
257 |
+
type="pil",
|
258 |
+
sources=["upload", "webcam"],
|
259 |
+
interactive=True,
|
260 |
+
elem_classes="input-component",
|
261 |
+
),
|
262 |
+
gr.Checkbox(label="Use Image URL Instead", value=False),
|
263 |
+
gr.Textbox(
|
264 |
+
label="Image URL",
|
265 |
+
placeholder="https://example.com/image.jpg",
|
266 |
+
visible=False,
|
267 |
+
elem_classes="input-component",
|
268 |
+
),
|
269 |
+
gr.Dropdown(
|
270 |
+
choices=CHECKPOINTS,
|
271 |
+
label="Select Model Checkpoint",
|
272 |
+
value=DEFAULT_CHECKPOINT,
|
273 |
+
elem_classes="input-component",
|
274 |
+
),
|
275 |
+
gr.Slider(
|
276 |
+
minimum=0.1,
|
277 |
+
maximum=1.0,
|
278 |
+
value=DEFAULT_CONFIDENCE_THRESHOLD,
|
279 |
+
step=0.1,
|
280 |
+
label="Confidence Threshold",
|
281 |
+
elem_classes="input-component",
|
282 |
+
),
|
283 |
+
]
|
284 |
+
|
285 |
+
|
286 |
+
def create_video_inputs() -> List[gr.components.Component]:
|
287 |
+
return [
|
288 |
+
gr.Video(
|
289 |
+
label="Upload Video",
|
290 |
+
sources=["upload"],
|
291 |
+
interactive=True,
|
292 |
+
format="mp4", # Ensure MP4 format
|
293 |
+
elem_classes="input-component",
|
294 |
+
),
|
295 |
+
gr.Dropdown(
|
296 |
+
choices=CHECKPOINTS,
|
297 |
+
label="Select Model Checkpoint",
|
298 |
+
value=DEFAULT_CHECKPOINT,
|
299 |
+
elem_classes="input-component",
|
300 |
+
),
|
301 |
+
gr.Slider(
|
302 |
+
minimum=0.1,
|
303 |
+
maximum=1.0,
|
304 |
+
value=DEFAULT_CONFIDENCE_THRESHOLD,
|
305 |
+
step=0.1,
|
306 |
+
label="Confidence Threshold",
|
307 |
+
elem_classes="input-component",
|
308 |
+
),
|
309 |
+
]
|
310 |
+
|
311 |
+
|
312 |
+
def create_button_row(is_image: bool) -> List[gr.Button]:
|
313 |
+
prefix = "Image" if is_image else "Video"
|
314 |
+
return [
|
315 |
+
gr.Button(
|
316 |
+
f"{prefix} Detect Objects", variant="primary", elem_classes="action-button"
|
317 |
+
),
|
318 |
+
gr.Button(f"{prefix} Clear", variant="secondary", elem_classes="action-button"),
|
319 |
+
]
|
320 |
+
|
321 |
+
|
322 |
# Gradio interface
|
323 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
324 |
gr.Markdown(
|
325 |
"""
|
326 |
# Real-Time Object Detection Demo
|
327 |
+
Experience state-of-the-art object detection with USTC's Dfine models. Upload an image or video,
|
328 |
+
provide a URL, or try an example below. Select a model and adjust the confidence threshold to see detections in real time!
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
""",
|
330 |
+
elem_classes="header-text",
|
331 |
)
|
332 |
+
|
333 |
+
with gr.Tabs():
|
334 |
+
with gr.Tab("Image"):
|
335 |
+
with gr.Row():
|
336 |
+
with gr.Column(scale=1, min_width=300):
|
337 |
+
with gr.Group():
|
338 |
+
(
|
339 |
+
image_input,
|
340 |
+
use_url,
|
341 |
+
url_input,
|
342 |
+
image_checkpoint,
|
343 |
+
image_confidence_threshold,
|
344 |
+
) = create_image_inputs()
|
345 |
+
image_detect_button, image_clear_button = create_button_row(
|
346 |
+
is_image=True
|
347 |
+
)
|
348 |
+
with gr.Column(scale=2):
|
349 |
+
image_output = gr.AnnotatedImage(
|
350 |
+
label="Detection Results",
|
351 |
+
show_label=True,
|
352 |
+
color_map=None,
|
353 |
+
elem_classes="output-component",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
)
|
355 |
+
image_error_message = gr.Markdown(
|
356 |
+
visible=False, elem_classes="error-text"
|
|
|
|
|
357 |
)
|
358 |
+
|
359 |
+
gr.Examples(
|
360 |
+
examples=[
|
361 |
+
[
|
362 |
+
example["path"],
|
363 |
+
example["use_url"],
|
364 |
+
example["url"],
|
365 |
+
DEFAULT_CHECKPOINT,
|
366 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
367 |
+
]
|
368 |
+
for example in IMAGE_EXAMPLES
|
369 |
+
],
|
370 |
+
inputs=[
|
371 |
+
image_input,
|
372 |
+
use_url,
|
373 |
+
url_input,
|
374 |
+
image_checkpoint,
|
375 |
+
image_confidence_threshold,
|
376 |
+
],
|
377 |
+
outputs=[image_output, image_error_message],
|
378 |
+
fn=detect_objects,
|
379 |
+
cache_examples=False,
|
380 |
+
label="Select an image example to populate inputs",
|
381 |
+
)
|
382 |
+
|
383 |
+
with gr.Tab("Video"):
|
384 |
+
gr.Markdown(
|
385 |
+
f"The input video will be truncated to {MAX_NUM_FRAMES} frames."
|
386 |
+
)
|
387 |
+
with gr.Row():
|
388 |
+
with gr.Column(scale=1, min_width=300):
|
389 |
+
with gr.Group():
|
390 |
+
video_input, video_checkpoint, video_confidence_threshold = (
|
391 |
+
create_video_inputs()
|
392 |
+
)
|
393 |
+
video_detect_button, video_clear_button = create_button_row(
|
394 |
+
is_image=False
|
395 |
+
)
|
396 |
+
with gr.Column(scale=2):
|
397 |
+
video_output = gr.Video(
|
398 |
+
label="Detection Results",
|
399 |
+
format="mp4", # Explicit MP4 format
|
400 |
+
elem_classes="output-component",
|
401 |
+
)
|
402 |
+
video_error_message = gr.Markdown(
|
403 |
+
visible=False, elem_classes="error-text"
|
404 |
+
)
|
405 |
+
|
406 |
+
gr.Examples(
|
407 |
+
examples=[
|
408 |
+
[example["path"], DEFAULT_CHECKPOINT, DEFAULT_CONFIDENCE_THRESHOLD]
|
409 |
+
for example in VIDEO_EXAMPLES
|
410 |
+
],
|
411 |
+
inputs=[video_input, video_checkpoint, video_confidence_threshold],
|
412 |
+
outputs=[video_output, video_error_message],
|
413 |
+
fn=process_video,
|
414 |
+
cache_examples=False,
|
415 |
+
label="Select a video example to populate inputs",
|
416 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
|
418 |
# Dynamic visibility for URL input
|
419 |
use_url.change(
|
|
|
422 |
outputs=url_input,
|
423 |
)
|
424 |
|
425 |
+
# Image clear button
|
426 |
+
image_clear_button.click(
|
427 |
fn=lambda: (
|
428 |
+
None,
|
429 |
+
False,
|
430 |
+
"",
|
431 |
+
DEFAULT_CHECKPOINT,
|
432 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
433 |
+
None,
|
434 |
+
gr.Markdown(visible=False),
|
435 |
),
|
436 |
outputs=[
|
437 |
image_input,
|
438 |
use_url,
|
439 |
url_input,
|
440 |
+
image_checkpoint,
|
441 |
+
image_confidence_threshold,
|
442 |
+
image_output,
|
443 |
+
image_error_message,
|
444 |
+
],
|
445 |
+
)
|
446 |
+
|
447 |
+
# Video clear button
|
448 |
+
video_clear_button.click(
|
449 |
+
fn=lambda: (
|
450 |
+
None,
|
451 |
+
DEFAULT_CHECKPOINT,
|
452 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
453 |
+
None,
|
454 |
+
gr.Markdown(visible=False),
|
455 |
+
),
|
456 |
+
outputs=[
|
457 |
+
video_input,
|
458 |
+
video_checkpoint,
|
459 |
+
video_confidence_threshold,
|
460 |
+
video_output,
|
461 |
+
video_error_message,
|
462 |
],
|
463 |
)
|
464 |
|
465 |
+
# Image detect button
|
466 |
+
image_detect_button.click(
|
467 |
fn=detect_objects,
|
468 |
+
inputs=[
|
469 |
+
image_input,
|
470 |
+
image_checkpoint,
|
471 |
+
image_confidence_threshold,
|
472 |
+
use_url,
|
473 |
+
url_input,
|
474 |
+
],
|
475 |
+
outputs=[image_output, image_error_message],
|
476 |
+
)
|
477 |
+
|
478 |
+
# Video detect button
|
479 |
+
video_detect_button.click(
|
480 |
+
fn=process_video,
|
481 |
+
inputs=[video_input, video_checkpoint, video_confidence_threshold],
|
482 |
+
outputs=[video_output, video_error_message],
|
483 |
)
|
484 |
|
485 |
if __name__ == "__main__":
|
486 |
+
demo.queue(max_size=20).launch()
|
requirements.txt
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
gradio
|
2 |
transformers @ git+https://github.com/huggingface/transformers
|
3 |
torch
|
4 |
-
torchvision
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
transformers @ git+https://github.com/huggingface/transformers
|
3 |
torch
|
4 |
+
torchvision
|
5 |
+
opencv-python
|
6 |
+
tqdm
|
7 |
+
pillow
|
video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:747f9c2f9d19e4955603e1a13b69663187882d4c6a8fbcad18ddbd04ee792d4d
|
3 |
+
size 1972564
|