RAG-PDF-Chatbot / app3.py
arjunanand13's picture
Update app3.py
184e87b verified
raw
history blame contribute delete
20.1 kB
import gradio as gr
import os
from typing import List, Dict
import numpy as np
from datasets import load_dataset
from langchain.text_splitter import (
RecursiveCharacterTextSplitter,
CharacterTextSplitter,
TokenTextSplitter
)
from langchain_community.vectorstores import FAISS, Chroma, Qdrant
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from sentence_transformers import SentenceTransformer, util
import torch
from ragas import evaluate
from ragas.metrics import (
ContextRecall,
AnswerRelevancy,
Faithfulness,
ContextPrecision
)
import pandas as pd
# Constants and setup
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
api_token = os.getenv("HF_TOKEN")
CHUNK_SIZES = {
"small": {"recursive": 512, "fixed": 512, "token": 256},
"medium": {"recursive": 1024, "fixed": 1024, "token": 512}
}
# Initialize sentence transformer for evaluation
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
class RAGEvaluator:
def __init__(self):
self.datasets = {
"squad": "squad_v2",
"msmarco": "ms_marco"
}
self.current_dataset = None
self.test_samples = []
def load_dataset(self, dataset_name: str, num_samples: int = 10):
"""Load a smaller subset of questions with proper error handling"""
try:
if dataset_name == "squad":
dataset = load_dataset("squad_v2", split="validation")
# Select diverse questions
samples = dataset.select(range(0, 1000, 100))[:num_samples]
self.test_samples = []
for sample in samples:
# Check if answers exist and are not empty
if sample.get("answers") and isinstance(sample["answers"], dict) and sample["answers"].get("text"):
self.test_samples.append({
"question": sample["question"],
"ground_truth": sample["answers"]["text"][0],
"context": sample["context"]
})
elif dataset_name == "msmarco":
dataset = load_dataset("ms_marco", "v2.1", split="dev")
samples = dataset.select(range(0, 1000, 100))[:num_samples]
self.test_samples = []
for sample in samples:
# Check for valid answers
if sample.get("answers") and sample["answers"]:
self.test_samples.append({
"question": sample["query"],
"ground_truth": sample["answers"][0],
"context": sample["passages"][0]["passage_text"]
if isinstance(sample["passages"], list)
else sample["passages"]["passage_text"][0]
})
self.current_dataset = dataset_name
# Return dataset info
return {
"dataset": dataset_name,
"num_samples": len(self.test_samples),
"sample_questions": [s["question"] for s in self.test_samples[:3]],
"status": "success"
}
except Exception as e:
print(f"Error loading dataset: {str(e)}")
return {
"dataset": dataset_name,
"error": str(e),
"status": "failed"
}
def evaluate_configuration(self, vector_db, qa_chain, splitting_strategy: str, chunk_size: str) -> Dict:
"""Evaluate with progress tracking and error handling"""
if not self.test_samples:
return {"error": "No dataset loaded"}
results = []
total_questions = len(self.test_samples)
# Add progress tracking
for i, sample in enumerate(self.test_samples):
print(f"Evaluating question {i+1}/{total_questions}")
try:
response = qa_chain.invoke({
"question": sample["question"],
"chat_history": []
})
results.append({
"question": sample["question"],
"answer": response["answer"],
"contexts": [doc.page_content for doc in response["source_documents"]],
"ground_truths": [sample["ground_truth"]]
})
except Exception as e:
print(f"Error processing question {i+1}: {str(e)}")
continue
if not results:
return {
"configuration": f"{splitting_strategy}_{chunk_size}",
"error": "No successful evaluations",
"questions_evaluated": 0
}
try:
# Calculate RAGAS metrics
eval_dataset = Dataset.from_list(results)
metrics = [ContextRecall(), AnswerRelevancy(), Faithfulness(), ContextPrecision()]
scores = evaluate(eval_dataset, metrics=metrics)
return {
"configuration": f"{splitting_strategy}_{chunk_size}",
"questions_evaluated": len(results),
"context_recall": float(scores['context_recall']),
"answer_relevancy": float(scores['answer_relevancy']),
"faithfulness": float(scores['faithfulness']),
"context_precision": float(scores['context_precision']),
"average_score": float(np.mean([
scores['context_recall'],
scores['answer_relevancy'],
scores['faithfulness'],
scores['context_precision']
]))
}
except Exception as e:
return {
"configuration": f"{splitting_strategy}_{chunk_size}",
"error": str(e),
"questions_evaluated": len(results)
}
# Text splitting and database functions
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
splitters = {
"recursive": RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"fixed": CharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"token": TokenTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
}
return splitters.get(strategy)
def load_doc(list_file_path: List[str], splitting_strategy: str, chunk_size: str):
chunk_size_value = CHUNK_SIZES[chunk_size][splitting_strategy]
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = get_text_splitter(splitting_strategy, chunk_size_value)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits, db_choice: str = "faiss"):
embeddings = HuggingFaceEmbeddings()
db_creators = {
"faiss": lambda: FAISS.from_documents(splits, embeddings),
"chroma": lambda: Chroma.from_documents(splits, embeddings),
"qdrant": lambda: Qdrant.from_documents(
splits,
embeddings,
location=":memory:",
collection_name="pdf_docs"
)
}
return db_creators[db_choice]()
def initialize_database(list_file_obj, splitting_strategy, chunk_size, db_choice, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path, splitting_strategy, chunk_size)
vector_db = create_db(doc_splits, db_choice)
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!"
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_model = list_llm[llm_choice]
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
memory=memory,
return_source_documents=True
)
return qa_chain, "LLM initialized successfully!"
def conversation(qa_chain, message, history):
"""Fixed conversation function returning all required outputs"""
response = qa_chain.invoke({
"question": message,
"chat_history": [(hist[0], hist[1]) for hist in history]
})
response_answer = response["answer"]
if "Helpful Answer:" in response_answer:
response_answer = response_answer.split("Helpful Answer:")[-1]
# Get source documents, ensure we have exactly 3
sources = response["source_documents"][:3]
source_contents = []
source_pages = []
# Process available sources
for source in sources:
source_contents.append(source.page_content.strip())
source_pages.append(source.metadata.get("page", 0) + 1)
# Pad with empty values if we have fewer than 3 sources
while len(source_contents) < 3:
source_contents.append("")
source_pages.append(0)
# Return all required outputs in correct order
return (
qa_chain, # State
gr.update(value=""), # Clear message box
history + [(message, response_answer)], # Updated chat history
source_contents[0], # First source
source_pages[0], # First page
source_contents[1], # Second source
source_pages[1], # Second page
source_contents[2], # Third source
source_pages[2] # Third page
)
def demo():
evaluator = RAGEvaluator()
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot with Evaluation</h1></center>")
with gr.Tabs():
# Custom PDF Tab
with gr.Tab("Custom PDF Chat"):
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
with gr.Row():
document = gr.Files(
height=300,
file_count="multiple",
file_types=["pdf"],
interactive=True,
label="Upload PDF documents"
)
with gr.Row():
splitting_strategy = gr.Radio(
["recursive", "fixed", "token"],
label="Text Splitting Strategy",
value="recursive"
)
db_choice = gr.Radio(
["faiss", "chroma", "qdrant"],
label="Vector Database",
value="faiss"
)
chunk_size = gr.Radio(
["small", "medium"],
label="Chunk Size",
value="medium"
)
with gr.Row():
db_btn = gr.Button("Create vector database")
db_progress = gr.Textbox(
value="Not initialized",
show_label=False
)
gr.Markdown("<b>Step 2 - Configure LLM</b>")
with gr.Row():
llm_choice = gr.Radio(
list_llm_simple,
label="Available LLMs",
value=list_llm_simple[0],
type="index"
)
with gr.Row():
with gr.Accordion("LLM Parameters", open=False):
temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.5,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=128,
maximum=4096,
value=2048,
step=128,
label="Max Tokens"
)
top_k = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Top K"
)
with gr.Row():
init_llm_btn = gr.Button("Initialize LLM")
llm_progress = gr.Textbox(
value="Not initialized",
show_label=False
)
with gr.Column(scale=200):
gr.Markdown("<b>Step 3 - Chat with Documents</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Source References", open=False):
with gr.Row():
source1 = gr.Textbox(label="Source 1", lines=2)
page1 = gr.Number(label="Page")
with gr.Row():
source2 = gr.Textbox(label="Source 2", lines=2)
page2 = gr.Number(label="Page")
with gr.Row():
source3 = gr.Textbox(label="Source 3", lines=2)
page3 = gr.Number(label="Page")
with gr.Row():
msg = gr.Textbox(
placeholder="Ask a question",
show_label=False
)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton(
[msg, chatbot],
value="Clear Chat"
)
# Evaluation Tab
with gr.Tab("RAG Evaluation"):
with gr.Row():
dataset_choice = gr.Dropdown(
choices=list(evaluator.datasets.keys()),
label="Select Evaluation Dataset",
value="squad"
)
load_dataset_btn = gr.Button("Load Dataset")
with gr.Row():
dataset_info = gr.JSON(label="Dataset Information")
with gr.Row():
eval_splitting_strategy = gr.Radio(
["recursive", "fixed", "token"],
label="Text Splitting Strategy",
value="recursive"
)
eval_chunk_size = gr.Radio(
["small", "medium"],
label="Chunk Size",
value="medium"
)
with gr.Row():
evaluate_btn = gr.Button("Run Evaluation")
evaluation_results = gr.DataFrame(label="Evaluation Results")
# Event handlers
db_btn.click(
initialize_database,
inputs=[document, splitting_strategy, chunk_size, db_choice],
outputs=[vector_db, db_progress]
)
init_llm_btn.click(
initialize_llmchain,
inputs=[llm_choice, temperature, max_tokens, top_k, vector_db],
outputs=[qa_chain, llm_progress]
)
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3]
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3]
)
def load_dataset_handler(dataset_name):
try:
result = evaluator.load_dataset(dataset_name)
if result.get("status") == "success":
return {
"dataset": result["dataset"],
"samples_loaded": result["num_samples"],
"example_questions": result["sample_questions"],
"status": "ready for evaluation"
}
else:
return {
"error": result.get("error", "Unknown error occurred"),
"status": "failed to load dataset"
}
except Exception as e:
return {
"error": str(e),
"status": "failed to load dataset"
}
def run_evaluation(dataset_choice, splitting_strategy, chunk_size, vector_db, qa_chain):
if not evaluator.current_dataset:
return pd.DataFrame()
results = evaluator.evaluate_configuration(
vector_db=vector_db,
qa_chain=qa_chain,
splitting_strategy=splitting_strategy,
chunk_size=chunk_size
)
return pd.DataFrame([results])
load_dataset_btn.click(
load_dataset_handler,
inputs=[dataset_choice],
outputs=[dataset_info]
)
evaluate_btn.click(
run_evaluation,
inputs=[
dataset_choice,
eval_splitting_strategy,
eval_chunk_size,
vector_db,
qa_chain
],
outputs=[evaluation_results]
)
# Clear button handlers
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
outputs=[chatbot, source1, page1, source2, page2, source3, page3]
)
# Launch the demo
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()