aditya-s-yadav commited on
Commit
1c81a9f
·
verified ·
1 Parent(s): 5d4217b

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +59 -0
  2. model.py +56 -0
  3. siamese_model.pth +3 -0
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from PIL import Image
4
+ import torchvision.transforms as transforms
5
+ from model import SiameseNetwork # Ensure this file exists with the model definition
6
+
7
+ # Define the device (GPU or CPU)
8
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
9
+
10
+ # Load the pre-trained Siamese model
11
+ model = SiameseNetwork().to(device)
12
+ model.load_state_dict(torch.load("siamese_model.pth", map_location=device))
13
+ model.eval()
14
+
15
+ # Define data transformation (resize, convert to tensor, normalize if needed)
16
+ transform = transforms.Compose([
17
+ transforms.Resize((100, 100)), # Resize to match the input size of the model
18
+ transforms.Grayscale(num_output_channels=1), # Convert images to grayscale for signature comparison
19
+ transforms.ToTensor(), # Convert image to tensor
20
+ ])
21
+
22
+ # Streamlit interface
23
+ st.title("Signature Forgery Detection with Siamese Network")
24
+ st.write("Upload two signature images to check if they are from the same person or if one is forged.")
25
+
26
+ # Upload images
27
+ image1 = st.file_uploader("Upload First Signature Image", type=["png", "jpg", "jpeg"])
28
+ image2 = st.file_uploader("Upload Second Signature Image", type=["png", "jpg", "jpeg"])
29
+
30
+ if image1 and image2:
31
+ # Load and transform the images
32
+ img1 = Image.open(image1).convert("RGB")
33
+ img2 = Image.open(image2).convert("RGB")
34
+
35
+ # Display images
36
+ col1, col2 = st.columns(2)
37
+ with col1:
38
+ st.image(img1, caption='First Signature Image', use_container_width=True)
39
+ with col2:
40
+ st.image(img2, caption='Second Signature Image', use_container_width=True)
41
+
42
+ # Transform the images before feeding them into the model
43
+ img1 = transform(img1).unsqueeze(0).to(device)
44
+ img2 = transform(img2).unsqueeze(0).to(device)
45
+
46
+ # Predict similarity using the Siamese model
47
+ output1, output2 = model(img1, img2)
48
+ euclidean_distance = torch.nn.functional.pairwise_distance(output1, output2)
49
+
50
+ # Set a threshold for similarity (can be tuned based on model performance)
51
+ threshold = 0.5 # You can adjust this threshold based on your model's performance
52
+
53
+ # Display similarity score and interpretation
54
+ st.success(f'Similarity Score (Euclidean Distance): {euclidean_distance.item():.4f}')
55
+ if euclidean_distance.item() < threshold:
56
+ st.write("The signatures are likely from the **same person**.")
57
+ else:
58
+ st.write("The signatures **do not match**, one might be **forged**.")
59
+
model.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ class SiameseNetwork(nn.Module):
5
+ def __init__(self):
6
+ super(SiameseNetwork, self).__init__()
7
+
8
+ self.cnn1 = nn.Sequential(
9
+ nn.Conv2d(1, 96, kernel_size=11, stride=1),
10
+ nn.ReLU(inplace=True),
11
+ nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2),
12
+ nn.MaxPool2d(3, stride=2),
13
+
14
+ nn.Conv2d(96, 256, kernel_size=5, stride=1, padding=2),
15
+ nn.ReLU(inplace=True),
16
+ nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2),
17
+ nn.MaxPool2d(3, stride=2),
18
+ nn.Dropout2d(p=0.3),
19
+
20
+ nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1),
21
+ nn.ReLU(inplace=True),
22
+
23
+ nn.Conv2d(384, 256, kernel_size=3, stride=1, padding=1),
24
+ nn.ReLU(inplace=True),
25
+ nn.MaxPool2d(3, stride=2),
26
+ nn.Dropout2d(p=0.3),
27
+ )
28
+
29
+ self.fc1 = nn.Sequential(
30
+ nn.Linear(25600, 1024),
31
+ nn.ReLU(inplace=True),
32
+ nn.Dropout2d(p=0.5),
33
+
34
+ nn.Linear(1024, 128),
35
+ nn.ReLU(inplace=True),
36
+
37
+ nn.Linear(128, 2)
38
+ )
39
+
40
+ def forward_once(self, x):
41
+ output = self.cnn1(x)
42
+ output = output.view(output.size()[0], -1)
43
+ output = self.fc1(output)
44
+ return output
45
+
46
+ def forward(self, input1, input2):
47
+ output1 = self.forward_once(input1)
48
+ output2 = self.forward_once(input2)
49
+ return output1, output2
50
+
51
+ # Function to load the trained model
52
+ def load_model(model_path):
53
+ model = SiameseNetwork()
54
+ model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
55
+ model.eval()
56
+ return model
siamese_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a674d49cdc8ca78544b7f1dfe7caf50b63650657c4d9e07badf0db5b3a512c07
3
+ size 114978840