File size: 11,421 Bytes
358b417 1c3d982 358b417 1c3d982 358b417 1c3d982 358b417 1c3d982 76f9924 61b4964 d60cb2b 61b4964 5870b8b 76f9924 358b417 61b4964 1c3d982 81b1678 1c3d982 81b1678 61b4964 1c3d982 76f9924 61b4964 1c3d982 76f9924 358b417 1c3d982 76f9924 26dad8e 76f9924 358b417 76f9924 358b417 76f9924 358b417 76f9924 5987169 76f9924 5987169 76f9924 26dad8e 76f9924 61b4964 358b417 76f9924 57f60e0 3c29c1f 5870b8b 76f9924 a58a7e6 1c3d982 26dad8e a58a7e6 26dad8e 76f9924 3c29c1f 26dad8e 3c29c1f 61b4964 3c29c1f 61b4964 3c29c1f 26dad8e a58a7e6 3c29c1f 26dad8e 1c3d982 3c29c1f 1c3d982 26dad8e a58a7e6 61b4964 76f9924 1c3d982 26dad8e 1c3d982 61b4964 1c3d982 76f9924 61b4964 26dad8e 1c3d982 76f9924 1c3d982 d60cb2b 61b4964 1c3d982 d60cb2b 1c3d982 d60cb2b 1c3d982 61b4964 1c3d982 d60cb2b 1c3d982 76f9924 89bb4b5 cc218c9 89bb4b5 cc218c9 89bb4b5 1c3d982 89bb4b5 1c3d982 89bb4b5 d60cb2b 1c3d982 89bb4b5 76f9924 89bb4b5 e9ae11b 5bd196a 89bb4b5 d60cb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import streamlit as st
import torch
import librosa
import numpy as np
import tempfile
from transformers import AutoModelForCTC, Wav2Vec2Processor, WhisperProcessor, WhisperForConditionalGeneration
from pyctcdecode import build_ctcdecoder
from huggingface_hub import hf_hub_download
from jiwer import wer
import json
import gzip
import shutil
import os
from pydub import AudioSegment
import time
import re
# Constants
WHISPER_FINETUNED = "wy0909/whisper-medium_mixedLanguageModel"
WHISPER_PRETRAINED = "openai/whisper-medium"
WAV2VEC_MODEL = "mesolitica/wav2vec2-xls-r-300m-mixed"
MAX_RECORDING_SECONDS = 12
def capitalize_sentences(text):
sentences = re.split(r'(?<=[.!?]) +', text)
capitalized = [s.strip().capitalize() for s in sentences]
return ' '.join(capitalized)
# Main title
st.title("๐๏ธ Bahasa Rojak Speech-to-Text")
# Sidebar configuration
st.sidebar.title("Model Configuration")
model_type = st.sidebar.selectbox(
"Select Model Type",
["Whisper", "Wav2Vec2"],
index=0,
help="Choose between Whisper or Wav2Vec2 models"
)
# Session state initialization
if "audio_bytes" not in st.session_state:
st.session_state.audio_bytes = None
if "audio_path" not in st.session_state:
st.session_state.audio_path = None
if "ground_truth" not in st.session_state:
st.session_state.ground_truth = ""
if "predicted_text" not in st.session_state:
st.session_state.predicted_text = ""
if "wer_value" not in st.session_state:
st.session_state.wer_value = None
if "selected_tab" not in st.session_state:
st.session_state.selected_tab = "๐ Upload Audio"
if "previous_tab" not in st.session_state:
st.session_state.previous_tab = "๐ Upload Audio"
# Tab Selection
tab1, tab2 = st.tabs(["๐ Upload Audio", "๐ค Record Audio"])
# Reset state if tab is changed
if st.session_state.selected_tab != st.session_state.previous_tab:
st.session_state.audio_bytes = None
st.session_state.audio_path = None
st.session_state.ground_truth = ""
st.session_state.predicted_text = ""
st.session_state.wer_value = None
st.session_state.previous_tab = st.session_state.selected_tab
# Tab 1: Upload Audio
with tab1:
uploaded_file = st.file_uploader("Upload a .wav or .mp3 file", type=["wav", "mp3"])
if uploaded_file:
try:
st.session_state.audio_bytes = uploaded_file.read()
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as tmp:
tmp.write(st.session_state.audio_bytes)
st.session_state.audio_path = tmp.name
if uploaded_file.name.endswith(".mp3"):
audio = AudioSegment.from_mp3(st.session_state.audio_path)
wav_path = st.session_state.audio_path.replace(".mp3", ".wav")
audio.export(wav_path, format="wav")
os.unlink(st.session_state.audio_path)
st.session_state.audio_path = wav_path
librosa.load(st.session_state.audio_path, sr=16000)
st.audio(st.session_state.audio_bytes, format="audio/wav")
except Exception as e:
st.error(f"โ Failed to read audio file: {str(e)}")
if 'st.session_state.audio_path' in locals() and os.path.exists(st.session_state.audio_path):
os.unlink(st.session_state.audio_path)
st.session_state.audio_bytes = None
# Tab 2: Record Audio
with tab2:
st.session_state.selected_tab = "๐ค Record Audio"
st.caption(f"Click microphone below to start recording (max {MAX_RECORDING_SECONDS} seconds)")
audio_input = st.audio_input("๐๏ธ Record Audio")
if audio_input:
try:
# Get the audio bytes in the correct format
audio_bytes = audio_input.read() if hasattr(audio_input, 'read') else audio_input.getvalue()
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_bytes)
temp_path = tmp.name
# Check duration
audio_segment = AudioSegment.from_file(temp_path)
duration_seconds = len(audio_segment) / 1000
if duration_seconds > MAX_RECORDING_SECONDS:
st.error(f"โ Recording too long! Please keep it under {MAX_RECORDING_SECONDS} seconds.")
os.unlink(temp_path)
else:
# Store in session state
st.session_state.audio_bytes = audio_bytes
st.session_state.audio_path = temp_path
# Validate and display
librosa.load(st.session_state.audio_path, sr=16000)
except Exception as e:
st.error(f"โ Failed to process recorded audio: {str(e)}")
if 'temp_path' in locals() and os.path.exists(temp_path):
os.unlink(temp_path)
st.session_state.audio_bytes = None
st.session_state.audio_path = None
# Input ground truth for WER
st.session_state.ground_truth = st.text_input(
"Enter ground truth for WER calculation (Optional)",
value=st.session_state.ground_truth,
key="ground_truth_input"
)
# Model-specific configurations
if model_type == "Wav2Vec2":
# Wav2Vec2 configuration
@st.cache_resource
def load_model():
processor = Wav2Vec2Processor.from_pretrained(WAV2VEC_MODEL)
model = AutoModelForCTC.from_pretrained(WAV2VEC_MODEL)
model.eval()
return processor, model
@st.cache_resource
def load_decoder():
vocab_path = hf_hub_download(
repo_id="ashantharosary/wav2vec2-ngram-finetuned",
filename="vocab.json",
repo_type="model"
)
with open(vocab_path, "r") as f:
vocab_dict = json.load(f)
sorted_vocab = sorted(vocab_dict.items(), key=lambda item: item[1])
vocab_list = [k.lower() for k, v in sorted_vocab]
arpa_gz_path = hf_hub_download(
repo_id="ashantharosary/wav2vec2-ngram-finetuned",
filename="4gram.arpa.gz",
repo_type="model"
)
arpa_path = "4gram.arpa"
if not os.path.exists(arpa_path):
with gzip.open(arpa_gz_path, 'rb') as f_in:
with open(arpa_path, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
decoder = build_ctcdecoder(vocab_list, kenlm_model_path=arpa_path, alpha=0.2, beta=1.0)
return decoder
processor, model = load_model()
decoder = load_decoder()
mode = st.selectbox(
"Choose transcription method:",
["Without N-gram LM", "With N-gram LM"],
help="Select whether to use language model decoding"
)
else:
# Whisper configuration
model_choice = st.selectbox(
"Select Whisper Model",
options=["Fine-tuned Model", "Pretrained Whisper-Medium Model"],
help="Choose the Whisper model to transcribe the audio"
)
@st.cache_resource
def load_finetuned_model_and_processor():
model = WhisperForConditionalGeneration.from_pretrained(WHISPER_FINETUNED,torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
attn_implementation="flash_attention_2" if torch.cuda.is_available() else None)
processor = WhisperProcessor.from_pretrained(WHISPER_FINETUNED)
model.config.forced_decoder_ids = None
model.generation_config.forced_decoder_ids = None
model.config.use_cache = None
model.config.suppress_tokens = []
if torch.cuda.is_available():
model = model.to("cuda")
return model, processor
@st.cache_resource
def load_pretrained_model_and_processor():
model = WhisperForConditionalGeneration.from_pretrained(WHISPER_PRETRAINED)
processor = WhisperProcessor.from_pretrained(WHISPER_PRETRAINED)
model.config.forced_decoder_ids = None
model.generation_config.forced_decoder_ids = None
model.config.use_cache = None
model.config.suppress_tokens = []
return model, processor
if model_choice == "Fine-tuned Model":
model, processor = load_finetuned_model_and_processor()
else:
model, processor = load_pretrained_model_and_processor()
# Transcription Button
if st.button("๐ Transcribe"):
if not st.session_state.audio_bytes:
st.error("โ Please upload or record an audio file first.")
else:
start_time = time.time()
try:
if model_type == "Wav2Vec2":
audio_input, _ = librosa.load(st.session_state.audio_path, sr=16000)
input_values = processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
with torch.no_grad():
logits = model(input_values).logits[0].cpu().numpy()
if mode == "With N-gram LM":
decoded_ngram = decoder.decode_beams(logits, prune_history=True)
st.session_state.predicted_text = decoded_ngram[0][0]
st.markdown("### ๐ Transcription with N-gram Language Model")
st.success(st.session_state.predicted_text)
else:
predicted_ids = torch.argmax(torch.tensor(logits), dim=-1)
st.session_state.predicted_text = processor.batch_decode(predicted_ids.unsqueeze(0))[0]
st.markdown("### ๐ค Transcription without N-gram Language Model")
st.info(st.session_state.predicted_text)
else:
audio_input_data, _ = librosa.load(st.session_state.audio_path, sr=16000)
input_features = processor(
audio_input_data, sampling_rate=16000, return_tensors="pt"
).input_features
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
transcription = capitalize_sentences(transcription)
st.session_state.predicted_text = transcription
st.markdown("### ๐ Predicted Transcription")
st.success(st.session_state.predicted_text)
if st.session_state.ground_truth:
st.session_state.wer_value = wer(
st.session_state.ground_truth.lower(),
st.session_state.predicted_text.lower()
)
st.markdown("### ๐งฎ Word Error Rate (WER)")
st.write(f"WER: `{st.session_state.wer_value * 100:.2f}%`")
except Exception as e:
st.error(f"โ Transcription failed: {str(e)}")
finally:
# Clean up temporary files
if st.session_state.audio_path and os.path.exists(st.session_state.audio_path):
os.unlink(st.session_state.audio_path)
st.session_state.audio_bytes = None
st.session_state.audio_path = None
st.session_state.audio_path = None
st.session_state.predicted_text = ""
st.session_state.ground_truth = ""
st.session_state.wer_value = None
end_time = time.time()
duration = end_time - start_time
st.caption(f"๐ Time taken: {duration:.2f}s")
|