Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,12 @@ import streamlit as st
|
|
2 |
from transformers import pipeline
|
3 |
|
4 |
# Title of the app
|
5 |
-
st.title("Multi-Task NLP App with
|
6 |
st.write("Explore advanced NLP tasks: Sentiment Analysis, Text Summarization, and Question Answering.")
|
7 |
|
8 |
# Load pre-trained models
|
9 |
sentiment_analyzer = pipeline("sentiment-analysis")
|
10 |
-
summarizer = pipeline("summarization")
|
11 |
qa_pipeline = pipeline("question-answering")
|
12 |
|
13 |
# Sidebar for task selection
|
@@ -26,14 +26,24 @@ if task == "Sentiment Analysis":
|
|
26 |
|
27 |
elif task == "Text Summarization":
|
28 |
st.header("Text Summarization")
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
st.write("Summary:")
|
34 |
st.write(result[0]['summary_text'])
|
35 |
-
|
36 |
-
st.
|
|
|
|
|
37 |
|
38 |
elif task == "Question Answering":
|
39 |
st.header("Question Answering")
|
|
|
2 |
from transformers import pipeline
|
3 |
|
4 |
# Title of the app
|
5 |
+
st.title("Multi-Task NLP App with Transformers")
|
6 |
st.write("Explore advanced NLP tasks: Sentiment Analysis, Text Summarization, and Question Answering.")
|
7 |
|
8 |
# Load pre-trained models
|
9 |
sentiment_analyzer = pipeline("sentiment-analysis")
|
10 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
11 |
qa_pipeline = pipeline("question-answering")
|
12 |
|
13 |
# Sidebar for task selection
|
|
|
26 |
|
27 |
elif task == "Text Summarization":
|
28 |
st.header("Text Summarization")
|
29 |
+
# User input
|
30 |
+
user_input = st.text_area("Enter text to summarize:")
|
31 |
+
|
32 |
+
# Summarization parameters
|
33 |
+
max_length = st.slider("Max Length of Summary", 50, 150, 100)
|
34 |
+
min_length = st.slider("Min Length of Summary", 10, 50, 25)
|
35 |
+
|
36 |
+
if st.button("Summarize"):
|
37 |
+
if user_input:
|
38 |
+
try:
|
39 |
+
# Generate summary
|
40 |
+
result = summarizer(user_input, max_length=max_length, min_length=min_length, do_sample=False)
|
41 |
st.write("Summary:")
|
42 |
st.write(result[0]['summary_text'])
|
43 |
+
except Exception as e:
|
44 |
+
st.error(f"An error occurred: {e}")
|
45 |
+
else:
|
46 |
+
st.write("Please enter some text to summarize.")
|
47 |
|
48 |
elif task == "Question Answering":
|
49 |
st.header("Question Answering")
|