File size: 8,251 Bytes
bec68b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from ultralytics import YOLO
from PIL import Image
import cv2
import mediapipe as mp
import numpy as np
import io
import tempfile
import os
from fastapi.middleware.cors import CORSMiddleware

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # In production, specify your allowed domains
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Health Check Endpoint
@app.get("/")
def root():
    """
    Health check endpoint to verify that the API is running.
    """
    return {"message": "YOLO11 Emotion Detection API is live!"}

# Load your custom YOLO emotion detection model
try:
    emotion_model = YOLO("model/yolo11m_affectnet_best.pt")
except Exception as e:
    raise Exception(f"Error loading emotion model: {e}")

def detect_emotions(image):
    """
    Given an OpenCV BGR image, detect faces using Mediapipe and perform emotion detection
    on each face crop using the YOLO model.
    Returns a list of detections with bounding box and emotion details.
    """
    height, width, _ = image.shape
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    detections_list = []
    
    mp_face_detection = mp.solutions.face_detection
    with mp_face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5) as face_detection:
        results = face_detection.process(image_rgb)
    
    if results.detections:
        for detection in results.detections:
            bbox = detection.location_data.relative_bounding_box
            x_min = int(bbox.xmin * width)
            y_min = int(bbox.ymin * height)
            box_width = int(bbox.width * width)
            box_height = int(bbox.height * height)
            x_max = x_min + box_width
            y_max = y_min + box_height

            x_min = max(0, x_min)
            y_min = max(0, y_min)
            x_max = min(width, x_max)
            y_max = min(height, y_max)

            face_crop = image[y_min:y_max, x_min:x_max]
            if face_crop.size == 0:
                continue
            face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
            face_pil = Image.fromarray(face_crop_rgb)

            emotion_results = emotion_model.predict(source=face_pil, conf=0.5)
            if len(emotion_results) > 0 and len(emotion_results[0].boxes) > 0:
                box_detect = emotion_results[0].boxes[0]
                emotion_label = emotion_results[0].names[int(box_detect.cls)]
                confidence = float(box_detect.conf)
            else:
                emotion_label = "N/A"
                confidence = 0.0

            detection_info = {
                "bbox": {
                    "x_min": x_min,
                    "y_min": y_min,
                    "x_max": x_max,
                    "y_max": y_max
                },
                "emotion": emotion_label,
                "confidence": confidence
            }
            detections_list.append(detection_info)
    return detections_list

@app.post("/predict_frame")
async def predict_frame(file: UploadFile = File(...)):
    """
    Accept an image file, run face and emotion detection, annotate the image with bounding boxes 
    and emotion labels, and return the annotated image as PNG.
    """
    if not file.filename.lower().endswith(('.jpg', '.jpeg', '.png')):
        raise HTTPException(status_code=400, detail="Invalid file format. Only JPG, JPEG, and PNG are allowed.")
    try:
        contents = await file.read()
        nparr = np.frombuffer(contents, np.uint8)
        image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
        if image is None:
            raise HTTPException(status_code=400, detail="Invalid image file.")
        
        detections = detect_emotions(image)
        
        for det in detections:
            bbox = det["bbox"]
            label_text = f'{det["emotion"]} ({det["confidence"]:.2f})'
            cv2.rectangle(image, (bbox["x_min"], bbox["y_min"]), (bbox["x_max"], bbox["y_max"]), (0, 255, 0), 2)
            cv2.putText(image, label_text, (bbox["x_min"], bbox["y_min"] - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
        
        is_success, im_buf_arr = cv2.imencode(".png", image)
        if not is_success:
            raise HTTPException(status_code=500, detail="Error encoding image.")
        byte_im = im_buf_arr.tobytes()
        buf = io.BytesIO(byte_im)
        buf.seek(0)
        return StreamingResponse(buf, media_type="image/png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
    finally:
        await file.close()

@app.post("/predict_emotion")
async def predict_emotion(file: UploadFile = File(...)):
    """
    Accept an image file, run face and emotion detection, and return the results as JSON.
    The JSON response includes a list of detections with bounding box coordinates, emotion label, and confidence score.
    """
    if not file.filename.lower().endswith(('.jpg', '.jpeg', '.png')):
        raise HTTPException(status_code=400, detail="Invalid file format. Only JPG, JPEG, and PNG are allowed.")
    try:
        contents = await file.read()
        nparr = np.frombuffer(contents, np.uint8)
        image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
        if image is None:
            raise HTTPException(status_code=400, detail="Invalid image file.")
        detections = detect_emotions(image)
        return {"detections": detections}
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
    finally:
        await file.close()

@app.post("/predict_video")
async def predict_video(file: UploadFile = File(...)):
    """
    Accept a video file, process it frame-by-frame with face and emotion detection,
    annotate each frame with bounding boxes and emotion labels, and return the annotated
    video as an MP4 file.
    """
    if not file.filename.lower().endswith(('.mp4', '.avi', '.mov')):
        raise HTTPException(status_code=400, detail="Invalid file format. Only MP4, AVI, and MOV are allowed.")
    try:
        contents = await file.read()
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_input:
            tmp_input.write(contents)
            input_video_path = tmp_input.name
        
        cap = cv2.VideoCapture(input_video_path)
        if not cap.isOpened():
            raise HTTPException(status_code=400, detail="Could not open video file.")
        
        fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output:
            output_video_path = tmp_output.name
        
        out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
        
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            
            detections = detect_emotions(frame)
            for det in detections:
                bbox = det["bbox"]
                label_text = f'{det["emotion"]} ({det["confidence"]:.2f})'
                cv2.rectangle(frame, (bbox["x_min"], bbox["y_min"]), (bbox["x_max"], bbox["y_max"]), (0, 255, 0), 2)
                cv2.putText(frame, label_text, (bbox["x_min"], bbox["y_min"] - 10),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
            out.write(frame)
        
        cap.release()
        out.release()
        
        with open(output_video_path, "rb") as f:
            video_bytes = f.read()
        
        os.remove(input_video_path)
        os.remove(output_video_path)
        
        return StreamingResponse(io.BytesIO(video_bytes), media_type="video/mp4")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing video: {str(e)}")
    finally:
        await file.close()

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)