File size: 10,547 Bytes
2a70c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# app.py
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

# Page configuration
st.set_page_config(page_title="Data Analysis Platform", layout="wide")

# Initialize session state
if 'data' not in st.session_state:
    # Create sample data
    np.random.seed(42)
    dates = pd.date_range('2023-01-01', periods=100, freq='D')
    st.session_state.data = pd.DataFrame({
        'date': dates,
        'sales': np.random.normal(1000, 200, 100),
        'visitors': np.random.normal(500, 100, 100),
        'conversion_rate': np.random.uniform(0.01, 0.05, 100),
        'customer_satisfaction': np.random.normal(4.2, 0.5, 100),
        'region': np.random.choice(['North', 'South', 'East', 'West'], 100)
    })

# Sidebar for navigation
st.sidebar.title("Data Analytics Platform")
page = st.sidebar.radio("Navigation", ["Home", "Data Explorer", "Visualization", "Predictions"])

# Home page
if page == "Home":
    st.title("Data Analysis Platform")
    st.markdown("""
    Welcome to the Data Analysis Platform. Explore your data with powerful 
    visualizations and machine learning insights.
    """)
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Upload Your Dataset")
        uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
        if uploaded_file is not None:
            try:
                st.session_state.data = pd.read_csv(uploaded_file)
                st.success("Data uploaded successfully!")
            except Exception as e:
                st.error(f"Error uploading file: {e}")
    
    with col2:
        st.subheader("Dataset Overview")
        st.write(st.session_state.data.describe())

# Data Explorer page
elif page == "Data Explorer":
    st.title("Data Explorer")
    
    # Data summary
    st.subheader("Dataset Summary")
    st.write(f"Shape: {st.session_state.data.shape[0]} rows, {st.session_state.data.shape[1]} columns")
    
    # Show first few rows
    st.subheader("Data Preview")
    st.dataframe(st.session_state.data.head())
    
    # Column analysis
    st.subheader("Column Analysis")
    col1, col2 = st.columns(2)
    
    with col1:
        column = st.selectbox("Select column to analyze:", st.session_state.data.columns)
    
    with col2:
        if pd.api.types.is_numeric_dtype(st.session_state.data[column]):
            analysis_type = st.selectbox(
                "Analysis type:", 
                ["Distribution", "Time Series"] if "date" in column.lower() else ["Distribution"]
            )
        else:
            analysis_type = st.selectbox("Analysis type:", ["Value Counts"])
    
    # Display analysis
    if pd.api.types.is_numeric_dtype(st.session_state.data[column]):
        st.write(f"**Min:** {st.session_state.data[column].min():.2f}")
        st.write(f"**Max:** {st.session_state.data[column].max():.2f}")
        st.write(f"**Mean:** {st.session_state.data[column].mean():.2f}")
        st.write(f"**Median:** {st.session_state.data[column].median():.2f}")
        st.write(f"**Std Dev:** {st.session_state.data[column].std():.2f}")
        
        fig, ax = plt.subplots(figsize=(10, 6))
        sns.histplot(st.session_state.data[column], ax=ax, kde=True)
        ax.set_title(f"Distribution of {column}")
        st.pyplot(fig)
    else:
        value_counts = st.session_state.data[column].value_counts()
        st.write(f"**Unique Values:** {len(value_counts)}")
        st.write(f"**Most Common:** {value_counts.index[0]} ({value_counts.iloc[0]} occurrences)")
        
        fig, ax = plt.subplots(figsize=(10, 6))
        value_counts.plot(kind='bar', ax=ax)
        ax.set_title(f"Value counts for {column}")
        st.pyplot(fig)

# Visualization page
elif page == "Visualization":
    st.title("Data Visualization")
    
    chart_type = st.selectbox(
        "Select chart type:",
        ["Bar Chart", "Line Chart", "Scatter Plot", "Heatmap"]
    )
    
    if chart_type in ["Bar Chart", "Line Chart"]:
        col1, col2 = st.columns(2)
        with col1:
            x_column = st.selectbox("X-axis:", st.session_state.data.columns)
        with col2:
            y_column = st.selectbox("Y-axis:", 
                                  [col for col in st.session_state.data.columns 
                                   if pd.api.types.is_numeric_dtype(st.session_state.data[col])])
        
        # Aggregation for categorical x-axis
        if not pd.api.types.is_numeric_dtype(st.session_state.data[x_column]):
            agg_data = st.session_state.data.groupby(x_column)[y_column].mean().reset_index()
            
            fig, ax = plt.subplots(figsize=(10, 6))
            if chart_type == "Bar Chart":
                sns.barplot(x=x_column, y=y_column, data=agg_data, ax=ax)
            else:  # Line chart
                sns.lineplot(x=x_column, y=y_column, data=agg_data, ax=ax, marker='o')
            ax.set_title(f"{y_column} by {x_column}")
            st.pyplot(fig)
        else:
            fig, ax = plt.subplots(figsize=(10, 6))
            if chart_type == "Bar Chart":
                sns.barplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
            else:  # Line chart
                sns.lineplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
            ax.set_title(f"{y_column} vs {x_column}")
            st.pyplot(fig)
    
    elif chart_type == "Scatter Plot":
        col1, col2 = st.columns(2)
        with col1:
            x_column = st.selectbox("X-axis:", 
                                  [col for col in st.session_state.data.columns 
                                   if pd.api.types.is_numeric_dtype(st.session_state.data[col])])
        with col2:
            y_column = st.selectbox("Y-axis:", 
                                  [col for col in st.session_state.data.columns 
                                   if pd.api.types.is_numeric_dtype(st.session_state.data[col]) and col != x_column])
        
        fig, ax = plt.subplots(figsize=(10, 6))
        sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
        ax.set_title(f"{y_column} vs {x_column}")
        st.pyplot(fig)
    
    elif chart_type == "Heatmap":
        numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist()
        correlation = st.session_state.data[numeric_cols].corr()
        
        fig, ax = plt.subplots(figsize=(10, 8))
        sns.heatmap(correlation, annot=True, cmap='coolwarm', ax=ax)
        ax.set_title("Correlation Heatmap")
        st.pyplot(fig)

# Predictions page
elif page == "Predictions":
    st.title("ML Predictions")
    
    numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist()
    
    st.subheader("Train a Model")
    col1, col2 = st.columns(2)
    
    with col1:
        target_column = st.selectbox("Target variable:", numeric_cols)
    
    with col2:
        model_type = st.selectbox("Model type:", ["Linear Regression", "Random Forest"])
    
    # Select features
    feature_cols = [col for col in numeric_cols if col != target_column]
    selected_features = st.multiselect("Select features:", feature_cols, default=feature_cols)
    
    if st.button("Train Model"):
        if len(selected_features) > 0:
            # Prepare data
            X = st.session_state.data[selected_features]
            y = st.session_state.data[target_column]
            
            # Split data
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
            
            # Scale features
            scaler = StandardScaler()
            X_train_scaled = scaler.fit_transform(X_train)
            X_test_scaled = scaler.transform(X_test)
            
            # Train model
            if model_type == "Linear Regression":
                model = LinearRegression()
            else:
                model = RandomForestRegressor(n_estimators=100, random_state=42)
                
            model.fit(X_train_scaled, y_train)
            
            # Evaluate
            train_score = model.score(X_train_scaled, y_train)
            test_score = model.score(X_test_scaled, y_test)
            
            st.session_state.model = model
            st.session_state.scaler = scaler
            st.session_state.features = selected_features
            
            st.success("Model trained successfully!")
            st.write(f"Training R² score: {train_score:.4f}")
            st.write(f"Testing R² score: {test_score:.4f}")
            
            # Feature importance for Random Forest
            if model_type == "Random Forest":
                importance = pd.DataFrame({
                    'Feature': selected_features,
                    'Importance': model.feature_importances_
                }).sort_values('Importance', ascending=False)
                
                fig, ax = plt.subplots(figsize=(10, 6))
                sns.barplot(x='Importance', y='Feature', data=importance, ax=ax)
                ax.set_title("Feature Importance")
                st.pyplot(fig)
        else:
            st.error("Please select at least one feature")
    
    # Make predictions section
    st.subheader("Make Predictions")
    if 'model' in st.session_state:
        input_data = {}
        
        # Create input fields for each feature
        for feature in st.session_state.features:
            min_val = float(st.session_state.data[feature].min())
            max_val = float(st.session_state.data[feature].max())
            mean_val = float(st.session_state.data[feature].mean())
            
            input_data[feature] = st.slider(
                f"Input {feature}:",
                min_value=min_val,
                max_value=max_val,
                value=mean_val
            )
        
        if st.button("Predict"):
            # Prepare input for prediction
            input_df = pd.DataFrame([input_data])
            input_scaled = st.session_state.scaler.transform(input_df)
            
            # Make prediction
            prediction = st.session_state.model.predict(input_scaled)[0]
            
            st.success(f"Predicted {target_column}: {prediction:.2f}")
    else:
        st.info("Train a model first to make predictions")