pythonnew / app.py
bangaboy's picture
Update app.py
3af41db verified
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
# Set page configuration with custom theme
st.set_page_config(
page_title="Data Analytics Hub",
page_icon="📊",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main {
padding-top: 2rem;
}
.stButton>button {
width: 100%;
border-radius: 5px;
height: 3em;
background-color: #ff4b4b;
color: white;
border: none;
}
.stButton>button:hover {
background-color: #ff6b6b;
color: white;
}
div[data-testid="stSidebarNav"] {
background-image: linear-gradient(#f0f2f6, #e0e2e6);
padding: 2rem 0;
border-radius: 10px;
}
.css-1d391kg {
padding: 2rem 1rem;
}
.stAlert {
padding: 1rem;
border-radius: 5px;
}
div[data-testid="stMetricValue"] {
background-color: #f0f2f6;
padding: 1rem;
border-radius: 5px;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'data' not in st.session_state:
# Create sample data
np.random.seed(42)
dates = pd.date_range('2023-01-01', periods=100, freq='D')
st.session_state.data = pd.DataFrame({
'date': dates,
'sales': np.random.normal(1000, 200, 100),
'visitors': np.random.normal(500, 100, 100),
'conversion_rate': np.random.uniform(0.01, 0.05, 100),
'customer_satisfaction': np.random.normal(4.2, 0.5, 100),
'region': np.random.choice(['North', 'South', 'East', 'West'], 100)
})
# Sidebar with enhanced styling
with st.sidebar:
st.image("https://via.placeholder.com/150?text=Analytics+Hub", width=150)
st.title("Analytics Hub")
selected_page = st.radio(
"📑 Navigation",
["🏠 Dashboard", "🔍 Data Explorer", "📊 Visualization", "🤖 ML Predictions"],
key="navigation"
)
# Dashboard page
if selected_page == "🏠 Dashboard":
st.title("📊 Data Analytics Dashboard")
# Quick stats in a grid
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(
"Total Records",
f"{len(st.session_state.data):,}",
"Current dataset size"
)
with col2:
st.metric(
"Avg Sales",
f"${st.session_state.data['sales'].mean():,.2f}",
f"{st.session_state.data['sales'].pct_change().mean()*100:.1f}%"
)
with col3:
st.metric(
"Avg Visitors",
f"{st.session_state.data['visitors'].mean():,.0f}",
f"{st.session_state.data['visitors'].pct_change().mean()*100:.1f}%"
)
with col4:
st.metric(
"Satisfaction",
f"{st.session_state.data['customer_satisfaction'].mean():.2f}",
"Average rating"
)
# Data upload section with better styling
st.markdown("### 📁 Upload Your Dataset")
upload_col1, upload_col2 = st.columns([2, 3])
with upload_col1:
uploaded_file = st.file_uploader(
"Choose a CSV file",
type="csv",
help="Upload your CSV file to begin analysis"
)
if uploaded_file is not None:
try:
st.session_state.data = pd.read_csv(uploaded_file)
st.success("✅ Data uploaded successfully!")
except Exception as e:
st.error(f"❌ Error uploading file: {e}")
with upload_col2:
st.markdown("#### Dataset Preview")
st.dataframe(
st.session_state.data.head(3),
use_container_width=True
)
# Data Explorer page
elif selected_page == "🔍 Data Explorer":
st.title("🔍 Data Explorer")
# Enhanced data summary
col1, col2 = st.columns([1, 2])
with col1:
st.markdown("### 📊 Dataset Overview")
st.info(f"""
- **Rows:** {st.session_state.data.shape[0]:,}
- **Columns:** {st.session_state.data.shape[1]}
- **Memory Usage:** {st.session_state.data.memory_usage().sum() / 1024**2:.2f} MB
""")
with col2:
st.markdown("### 📈 Quick Stats")
st.dataframe(
st.session_state.data.describe(),
use_container_width=True
)
# Column analysis with better visualization
st.markdown("### 🔬 Column Analysis")
col1, col2, col3 = st.columns([1, 1, 2])
with col1:
column = st.selectbox(
"Select column:",
st.session_state.data.columns,
help="Choose a column to analyze"
)
with col2:
if pd.api.types.is_numeric_dtype(st.session_state.data[column]):
analysis_type = st.selectbox(
"Analysis type:",
["Distribution", "Time Series"] if "date" in column.lower() else ["Distribution"],
help="Choose type of analysis"
)
else:
analysis_type = "Value Counts"
with col3:
if pd.api.types.is_numeric_dtype(st.session_state.data[column]):
stats_col1, stats_col2 = st.columns(2)
with stats_col1:
st.metric("Mean", f"{st.session_state.data[column].mean():.2f}")
st.metric("Std Dev", f"{st.session_state.data[column].std():.2f}")
with stats_col2:
st.metric("Median", f"{st.session_state.data[column].median():.2f}")
st.metric("IQR", f"{st.session_state.data[column].quantile(0.75) - st.session_state.data[column].quantile(0.25):.2f}")
# Enhanced visualization
fig, ax = plt.subplots(figsize=(12, 6))
if pd.api.types.is_numeric_dtype(st.session_state.data[column]):
sns.set_style("whitegrid")
sns.histplot(data=st.session_state.data, x=column, kde=True, ax=ax)
ax.set_title(f"Distribution of {column}", pad=20)
else:
value_counts = st.session_state.data[column].value_counts()
sns.barplot(x=value_counts.index, y=value_counts.values, ax=ax)
ax.set_title(f"Value Counts for {column}", pad=20)
plt.xticks(rotation=45)
st.pyplot(fig)
# Visualization page
elif selected_page == "📊 Visualization":
st.title("📊 Advanced Visualizations")
# Enhanced chart selection
chart_type = st.selectbox(
"Select visualization type:",
["📊 Bar Chart", "📈 Line Chart", "🔵 Scatter Plot", "🌡️ Heatmap"],
help="Choose the type of visualization you want to create"
)
if chart_type in ["📊 Bar Chart", "📈 Line Chart"]:
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
x_column = st.selectbox("X-axis:", st.session_state.data.columns)
with col2:
y_column = st.selectbox(
"Y-axis:",
[col for col in st.session_state.data.columns
if pd.api.types.is_numeric_dtype(st.session_state.data[col])]
)
with col3:
color_theme = st.selectbox(
"Color theme:",
["viridis", "magma", "plasma", "inferno"]
)
# Create enhanced visualization
fig, ax = plt.subplots(figsize=(12, 6))
sns.set_style("whitegrid")
sns.set_palette(color_theme)
if not pd.api.types.is_numeric_dtype(st.session_state.data[x_column]):
agg_data = st.session_state.data.groupby(x_column)[y_column].mean().reset_index()
if "Bar" in chart_type:
sns.barplot(x=x_column, y=y_column, data=agg_data, ax=ax)
else:
sns.lineplot(x=x_column, y=y_column, data=agg_data, ax=ax, marker='o')
else:
if "Bar" in chart_type:
sns.barplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
else:
sns.lineplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
plt.xticks(rotation=45)
ax.set_title(f"{y_column} by {x_column}", pad=20)
st.pyplot(fig)
elif "Scatter" in chart_type:
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
x_column = st.selectbox(
"X-axis:",
[col for col in st.session_state.data.columns
if pd.api.types.is_numeric_dtype(st.session_state.data[col])]
)
with col2:
y_column = st.selectbox(
"Y-axis:",
[col for col in st.session_state.data.columns
if pd.api.types.is_numeric_dtype(st.session_state.data[col]) and col != x_column]
)
with col3:
hue_column = st.selectbox(
"Color by:",
["None"] + list(st.session_state.data.columns)
)
fig, ax = plt.subplots(figsize=(12, 6))
sns.set_style("whitegrid")
if hue_column != "None":
sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, hue=hue_column, ax=ax)
else:
sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
ax.set_title(f"{y_column} vs {x_column}", pad=20)
st.pyplot(fig)
elif "Heatmap" in chart_type:
st.markdown("### 🌡️ Correlation Heatmap")
numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist()
correlation = st.session_state.data[numeric_cols].corr()
fig, ax = plt.subplots(figsize=(12, 8))
mask = np.triu(np.ones_like(correlation))
sns.heatmap(
correlation,
mask=mask,
annot=True,
cmap='coolwarm',
ax=ax,
center=0,
square=True,
fmt='.2f',
linewidths=1
)
ax.set_title("Correlation Heatmap", pad=20)
st.pyplot(fig)
# ML Predictions page
elif selected_page == "🤖 ML Predictions":
st.title("🤖 Machine Learning Predictions")
# Model configuration
st.markdown("### ⚙️ Model Configuration")
config_col1, config_col2 = st.columns(2)
with config_col1:
numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist()
target_column = st.selectbox(
"Target variable:",
numeric_cols,
help="Select the variable you want to predict"
)
with config_col2:
model_type = st.selectbox(
"Model type:",
["📊 Linear Regression", "🌲 Random Forest"],
help="Choose the type of model to train"
)
# Feature selection with better UI
st.markdown("### 🎯 Feature Selection")
feature_cols = [col for col in numeric_cols if col != target_column]
selected_features = st.multiselect(
"Select features for the model:",
feature_cols,
default=feature_cols,
help="Choose the variables to use as predictors"
)
# Model training section
train_col1, train_col2 = st.columns([2, 1])
with train_col1:
if st.button("🚀 Train Model", use_container_width=True):
if len(selected_features) > 0:
with st.spinner("Training model..."):
# Prepare data
X = st.session_state.data[selected_features]
y = st.session_state.data[target_column]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
if "Linear" in model_type:
model = LinearRegression()
else:
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train_scaled, y_train)
# Store model and scaler in session state
st.session_state.model = model
st.session_state.scaler = scaler
st.session_state.features = selected_features
# Model evaluation
train_score = model.score(X_train_scaled, y_train)
test_score = model.score(X_test_scaled, y_test)
st.success("✨ Model trained successfully!")
# Display metrics
metric_col1, metric_col2 = st.columns(2)
with metric_col1:
st.metric("Training R² Score", f"{train_score:.4f}")
with metric_col2:
st.metric("Testing R² Score", f"{test_score:.4f}")
# Feature importance for Random Forest
if "Random" in model_type:
st.markdown("### 📊 Feature Importance")
importance = pd.DataFrame({
'Feature': selected_features,
'Importance': model.feature_importances_
}).sort_values('Importance', ascending=False)
fig, ax = plt.subplots(figsize=(10, 6))
sns.barplot(x='Importance', y='Feature', data=importance, ax=ax)
ax.set_title("Feature Importance")
st.pyplot(fig)
else:
st.error("⚠️ Please select at least one feature")
# Prediction section
st.markdown("### 🎯 Make Predictions")
if 'model' in st.session_state:
pred_col1, pred_col2 = st.columns([2, 1])
with pred_col1:
st.markdown("#### Input Features")
input_data = {}
# Create input fields for each feature
for feature in st.session_state.features:
min_val = float(st.session_state.data[feature].min())
max_val = float(st.session_state.data[feature].max())
mean_val = float(st.session_state.data[feature].mean())
input_data[feature] = st.slider(
f"{feature}:",
min_value=min_val,
max_value=max_val,
value=mean_val,
help=f"Range: {min_val:.2f} to {max_val:.2f}"
)
with pred_col2:
if st.button("🎯 Predict", use_container_width=True):
input_df = pd.DataFrame([input_data])
input_scaled = st.session_state.scaler.transform(input_df)
prediction = st.session_state.model.predict(input_scaled)[0]
st.success(f"Predicted {target_column}: {prediction:.2f}")
else:
st.info("ℹ️ Train a model first to make predictions")