Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from sklearn.linear_model import LinearRegression
|
7 |
+
from sklearn.ensemble import RandomForestRegressor
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
|
11 |
+
# Set page configuration with custom theme
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="Data Analytics Hub",
|
14 |
+
page_icon="📊",
|
15 |
+
layout="wide",
|
16 |
+
initial_sidebar_state="expanded"
|
17 |
+
)
|
18 |
+
|
19 |
+
# Custom CSS for better styling
|
20 |
+
st.markdown("""
|
21 |
+
<style>
|
22 |
+
.main {
|
23 |
+
padding-top: 2rem;
|
24 |
+
}
|
25 |
+
.stButton>button {
|
26 |
+
width: 100%;
|
27 |
+
border-radius: 5px;
|
28 |
+
height: 3em;
|
29 |
+
background-color: #ff4b4b;
|
30 |
+
color: white;
|
31 |
+
border: none;
|
32 |
+
}
|
33 |
+
.stButton>button:hover {
|
34 |
+
background-color: #ff6b6b;
|
35 |
+
color: white;
|
36 |
+
}
|
37 |
+
div[data-testid="stSidebarNav"] {
|
38 |
+
background-image: linear-gradient(#f0f2f6, #e0e2e6);
|
39 |
+
padding: 2rem 0;
|
40 |
+
border-radius: 10px;
|
41 |
+
}
|
42 |
+
.css-1d391kg {
|
43 |
+
padding: 2rem 1rem;
|
44 |
+
}
|
45 |
+
.stAlert {
|
46 |
+
padding: 1rem;
|
47 |
+
border-radius: 5px;
|
48 |
+
}
|
49 |
+
div[data-testid="stMetricValue"] {
|
50 |
+
background-color: #f0f2f6;
|
51 |
+
padding: 1rem;
|
52 |
+
border-radius: 5px;
|
53 |
+
}
|
54 |
+
</style>
|
55 |
+
""", unsafe_allow_html=True)
|
56 |
+
|
57 |
+
# Initialize session state
|
58 |
+
if 'data' not in st.session_state:
|
59 |
+
# Create sample data
|
60 |
+
np.random.seed(42)
|
61 |
+
dates = pd.date_range('2023-01-01', periods=100, freq='D')
|
62 |
+
st.session_state.data = pd.DataFrame({
|
63 |
+
'date': dates,
|
64 |
+
'sales': np.random.normal(1000, 200, 100),
|
65 |
+
'visitors': np.random.normal(500, 100, 100),
|
66 |
+
'conversion_rate': np.random.uniform(0.01, 0.05, 100),
|
67 |
+
'customer_satisfaction': np.random.normal(4.2, 0.5, 100),
|
68 |
+
'region': np.random.choice(['North', 'South', 'East', 'West'], 100)
|
69 |
+
})
|
70 |
+
|
71 |
+
# Sidebar with enhanced styling
|
72 |
+
with st.sidebar:
|
73 |
+
st.image("https://via.placeholder.com/150?text=Analytics+Hub", width=150)
|
74 |
+
st.title("Analytics Hub")
|
75 |
+
selected_page = st.radio(
|
76 |
+
"📑 Navigation",
|
77 |
+
["🏠 Dashboard", "🔍 Data Explorer", "📊 Visualization", "🤖 ML Predictions"],
|
78 |
+
key="navigation"
|
79 |
+
)
|
80 |
+
|
81 |
+
# Dashboard page
|
82 |
+
if selected_page == "🏠 Dashboard":
|
83 |
+
st.title("📊 Data Analytics Dashboard")
|
84 |
+
|
85 |
+
# Quick stats in a grid
|
86 |
+
col1, col2, col3, col4 = st.columns(4)
|
87 |
+
|
88 |
+
with col1:
|
89 |
+
st.metric(
|
90 |
+
"Total Records",
|
91 |
+
f"{len(st.session_state.data):,}",
|
92 |
+
"Current dataset size"
|
93 |
+
)
|
94 |
+
|
95 |
+
with col2:
|
96 |
+
st.metric(
|
97 |
+
"Avg Sales",
|
98 |
+
f"${st.session_state.data['sales'].mean():,.2f}",
|
99 |
+
f"{st.session_state.data['sales'].pct_change().mean()*100:.1f}%"
|
100 |
+
)
|
101 |
+
|
102 |
+
with col3:
|
103 |
+
st.metric(
|
104 |
+
"Avg Visitors",
|
105 |
+
f"{st.session_state.data['visitors'].mean():,.0f}",
|
106 |
+
f"{st.session_state.data['visitors'].pct_change().mean()*100:.1f}%"
|
107 |
+
)
|
108 |
+
|
109 |
+
with col4:
|
110 |
+
st.metric(
|
111 |
+
"Satisfaction",
|
112 |
+
f"{st.session_state.data['customer_satisfaction'].mean():.2f}",
|
113 |
+
"Average rating"
|
114 |
+
)
|
115 |
+
|
116 |
+
# Data upload section with better styling
|
117 |
+
st.markdown("### 📁 Upload Your Dataset")
|
118 |
+
upload_col1, upload_col2 = st.columns([2, 3])
|
119 |
+
|
120 |
+
with upload_col1:
|
121 |
+
uploaded_file = st.file_uploader(
|
122 |
+
"Choose a CSV file",
|
123 |
+
type="csv",
|
124 |
+
help="Upload your CSV file to begin analysis"
|
125 |
+
)
|
126 |
+
if uploaded_file is not None:
|
127 |
+
try:
|
128 |
+
st.session_state.data = pd.read_csv(uploaded_file)
|
129 |
+
st.success("✅ Data uploaded successfully!")
|
130 |
+
except Exception as e:
|
131 |
+
st.error(f"❌ Error uploading file: {e}")
|
132 |
+
|
133 |
+
with upload_col2:
|
134 |
+
st.markdown("#### Dataset Preview")
|
135 |
+
st.dataframe(
|
136 |
+
st.session_state.data.head(3),
|
137 |
+
use_container_width=True
|
138 |
+
)
|
139 |
+
# Data Explorer page
|
140 |
+
elif selected_page == "🔍 Data Explorer":
|
141 |
+
st.title("🔍 Data Explorer")
|
142 |
+
|
143 |
+
# Enhanced data summary
|
144 |
+
col1, col2 = st.columns([1, 2])
|
145 |
+
|
146 |
+
with col1:
|
147 |
+
st.markdown("### 📊 Dataset Overview")
|
148 |
+
st.info(f"""
|
149 |
+
- **Rows:** {st.session_state.data.shape[0]:,}
|
150 |
+
- **Columns:** {st.session_state.data.shape[1]}
|
151 |
+
- **Memory Usage:** {st.session_state.data.memory_usage().sum() / 1024**2:.2f} MB
|
152 |
+
""")
|
153 |
+
|
154 |
+
with col2:
|
155 |
+
st.markdown("### 📈 Quick Stats")
|
156 |
+
st.dataframe(
|
157 |
+
st.session_state.data.describe(),
|
158 |
+
use_container_width=True
|
159 |
+
)
|
160 |
+
|
161 |
+
# Column analysis with better visualization
|
162 |
+
st.markdown("### 🔬 Column Analysis")
|
163 |
+
|
164 |
+
col1, col2, col3 = st.columns([1, 1, 2])
|
165 |
+
|
166 |
+
with col1:
|
167 |
+
column = st.selectbox(
|
168 |
+
"Select column:",
|
169 |
+
st.session_state.data.columns,
|
170 |
+
help="Choose a column to analyze"
|
171 |
+
)
|
172 |
+
|
173 |
+
with col2:
|
174 |
+
if pd.api.types.is_numeric_dtype(st.session_state.data[column]):
|
175 |
+
analysis_type = st.selectbox(
|
176 |
+
"Analysis type:",
|
177 |
+
["Distribution", "Time Series"] if "date" in column.lower() else ["Distribution"],
|
178 |
+
help="Choose type of analysis"
|
179 |
+
)
|
180 |
+
else:
|
181 |
+
analysis_type = "Value Counts"
|
182 |
+
|
183 |
+
with col3:
|
184 |
+
if pd.api.types.is_numeric_dtype(st.session_state.data[column]):
|
185 |
+
stats_col1, stats_col2 = st.columns(2)
|
186 |
+
with stats_col1:
|
187 |
+
st.metric("Mean", f"{st.session_state.data[column].mean():.2f}")
|
188 |
+
st.metric("Std Dev", f"{st.session_state.data[column].std():.2f}")
|
189 |
+
with stats_col2:
|
190 |
+
st.metric("Median", f"{st.session_state.data[column].median():.2f}")
|
191 |
+
st.metric("IQR", f"{st.session_state.data[column].quantile(0.75) - st.session_state.data[column].quantile(0.25):.2f}")
|
192 |
+
|
193 |
+
# Enhanced visualization
|
194 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
195 |
+
if pd.api.types.is_numeric_dtype(st.session_state.data[column]):
|
196 |
+
sns.set_style("whitegrid")
|
197 |
+
sns.histplot(data=st.session_state.data, x=column, kde=True, ax=ax)
|
198 |
+
ax.set_title(f"Distribution of {column}", pad=20)
|
199 |
+
else:
|
200 |
+
value_counts = st.session_state.data[column].value_counts()
|
201 |
+
sns.barplot(x=value_counts.index, y=value_counts.values, ax=ax)
|
202 |
+
ax.set_title(f"Value Counts for {column}", pad=20)
|
203 |
+
plt.xticks(rotation=45)
|
204 |
+
|
205 |
+
st.pyplot(fig)
|
206 |
+
# Visualization page
|
207 |
+
elif selected_page == "📊 Visualization":
|
208 |
+
st.title("📊 Advanced Visualizations")
|
209 |
+
|
210 |
+
# Enhanced chart selection
|
211 |
+
chart_type = st.selectbox(
|
212 |
+
"Select visualization type:",
|
213 |
+
["📊 Bar Chart", "📈 Line Chart", "🔵 Scatter Plot", "🌡️ Heatmap"],
|
214 |
+
help="Choose the type of visualization you want to create"
|
215 |
+
)
|
216 |
+
|
217 |
+
if chart_type in ["📊 Bar Chart", "📈 Line Chart"]:
|
218 |
+
col1, col2, col3 = st.columns([1, 1, 1])
|
219 |
+
|
220 |
+
with col1:
|
221 |
+
x_column = st.selectbox("X-axis:", st.session_state.data.columns)
|
222 |
+
|
223 |
+
with col2:
|
224 |
+
y_column = st.selectbox(
|
225 |
+
"Y-axis:",
|
226 |
+
[col for col in st.session_state.data.columns
|
227 |
+
if pd.api.types.is_numeric_dtype(st.session_state.data[col])]
|
228 |
+
)
|
229 |
+
|
230 |
+
with col3:
|
231 |
+
color_theme = st.selectbox(
|
232 |
+
"Color theme:",
|
233 |
+
["viridis", "magma", "plasma", "inferno"]
|
234 |
+
)
|
235 |
+
|
236 |
+
# Create enhanced visualization
|
237 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
238 |
+
sns.set_style("whitegrid")
|
239 |
+
sns.set_palette(color_theme)
|
240 |
+
|
241 |
+
if not pd.api.types.is_numeric_dtype(st.session_state.data[x_column]):
|
242 |
+
agg_data = st.session_state.data.groupby(x_column)[y_column].mean().reset_index()
|
243 |
+
|
244 |
+
if "Bar" in chart_type:
|
245 |
+
sns.barplot(x=x_column, y=y_column, data=agg_data, ax=ax)
|
246 |
+
else:
|
247 |
+
sns.lineplot(x=x_column, y=y_column, data=agg_data, ax=ax, marker='o')
|
248 |
+
else:
|
249 |
+
if "Bar" in chart_type:
|
250 |
+
sns.barplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
|
251 |
+
else:
|
252 |
+
sns.lineplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
|
253 |
+
|
254 |
+
plt.xticks(rotation=45)
|
255 |
+
ax.set_title(f"{y_column} by {x_column}", pad=20)
|
256 |
+
st.pyplot(fig)
|
257 |
+
|
258 |
+
elif "Scatter" in chart_type:
|
259 |
+
col1, col2, col3 = st.columns([1, 1, 1])
|
260 |
+
|
261 |
+
with col1:
|
262 |
+
x_column = st.selectbox(
|
263 |
+
"X-axis:",
|
264 |
+
[col for col in st.session_state.data.columns
|
265 |
+
if pd.api.types.is_numeric_dtype(st.session_state.data[col])]
|
266 |
+
)
|
267 |
+
|
268 |
+
with col2:
|
269 |
+
y_column = st.selectbox(
|
270 |
+
"Y-axis:",
|
271 |
+
[col for col in st.session_state.data.columns
|
272 |
+
if pd.api.types.is_numeric_dtype(st.session_state.data[col]) and col != x_column]
|
273 |
+
)
|
274 |
+
|
275 |
+
with col3:
|
276 |
+
hue_column = st.selectbox(
|
277 |
+
"Color by:",
|
278 |
+
["None"] + list(st.session_state.data.columns)
|
279 |
+
)
|
280 |
+
|
281 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
282 |
+
sns.set_style("whitegrid")
|
283 |
+
|
284 |
+
if hue_column != "None":
|
285 |
+
sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, hue=hue_column, ax=ax)
|
286 |
+
else:
|
287 |
+
sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
|
288 |
+
|
289 |
+
ax.set_title(f"{y_column} vs {x_column}", pad=20)
|
290 |
+
st.pyplot(fig)
|
291 |
+
|
292 |
+
elif "Heatmap" in chart_type:
|
293 |
+
st.markdown("### 🌡️ Correlation Heatmap")
|
294 |
+
|
295 |
+
numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist()
|
296 |
+
correlation = st.session_state.data[numeric_cols].corr()
|
297 |
+
|
298 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
299 |
+
mask = np.triu(np.ones_like(correlation))
|
300 |
+
sns.heatmap(
|
301 |
+
correlation,
|
302 |
+
mask=mask,
|
303 |
+
annot=True,
|
304 |
+
cmap='coolwarm',
|
305 |
+
ax=ax,
|
306 |
+
center=0,
|
307 |
+
square=True,
|
308 |
+
fmt='.2f',
|
309 |
+
linewidths=1
|
310 |
+
)
|
311 |
+
ax.set_title("Correlation Heatmap", pad=20)
|
312 |
+
st.pyplot(fig)
|
313 |
+
# ML Predictions page
|
314 |
+
elif selected_page == "🤖 ML Predictions":
|
315 |
+
st.title("🤖 Machine Learning Predictions")
|
316 |
+
|
317 |
+
# Model configuration
|
318 |
+
st.markdown("### ⚙️ Model Configuration")
|
319 |
+
|
320 |
+
config_col1, config_col2 = st.columns(2)
|
321 |
+
|
322 |
+
with config_col1:
|
323 |
+
numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist()
|
324 |
+
target_column = st.selectbox(
|
325 |
+
"Target variable:",
|
326 |
+
numeric_cols,
|
327 |
+
help="Select the variable you want to predict"
|
328 |
+
)
|
329 |
+
|
330 |
+
with config_col2:
|
331 |
+
model_type = st.selectbox(
|
332 |
+
"Model type:",
|
333 |
+
["📊 Linear Regression", "🌲 Random Forest"],
|
334 |
+
help="Choose the type of model to train"
|
335 |
+
)
|
336 |
+
|
337 |
+
# Feature selection with better UI
|
338 |
+
st.markdown("### 🎯 Feature Selection")
|
339 |
+
feature_cols = [col for col in numeric_cols if col != target_column]
|
340 |
+
selected_features = st.multiselect(
|
341 |
+
"Select features for the model:",
|
342 |
+
feature_cols,
|
343 |
+
default=feature_cols,
|
344 |
+
help="Choose the variables to use as predictors"
|
345 |
+
)
|
346 |
+
|
347 |
+
# Model training section
|
348 |
+
train_col1, train_col2 = st.columns([2, 1])
|
349 |
+
|
350 |
+
with train_col1:
|
351 |
+
if st.button("🚀 Train Model", use_container_width=True):
|
352 |
+
if len(selected_features) > 0:
|
353 |
+
with st.spinner("Training model..."):
|
354 |
+
# Prepare data
|
355 |
+
X = st.session_state.data[selected_features]
|
356 |
+
y = st.session_state.data[target_column]
|
357 |
+
|
358 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
359 |
+
|
360 |
+
scaler = StandardScaler()
|
361 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
362 |
+
X_test_scaled = scaler.transform(X_test)
|
363 |
+
|
364 |
+
if "Linear" in model_type:
|
365 |
+
model = LinearRegression()
|
366 |
+
else:
|
367 |
+
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
368 |
+
|
369 |
+
model.fit(X_train_scaled, y_train)
|
370 |
+
|
371 |
+
# Store model and scaler in session state
|
372 |
+
st.session_state.model = model
|
373 |
+
st.session_state.scaler = scaler
|
374 |
+
st.session_state.features = selected_features
|
375 |
+
|
376 |
+
# Model evaluation
|
377 |
+
train_score = model.score(X_train_scaled, y_train)
|
378 |
+
test_score = model.score(X_test_scaled, y_test)
|
379 |
+
|
380 |
+
st.success("✨ Model trained successfully!")
|
381 |
+
|
382 |
+
# Display metrics
|
383 |
+
metric_col1, metric_col2 = st.columns(2)
|
384 |
+
with metric_col1:
|
385 |
+
st.metric("Training R² Score", f"{train_score:.4f}")
|
386 |
+
with metric_col2:
|
387 |
+
st.metric("Testing R² Score", f"{test_score:.4f}")
|
388 |
+
|
389 |
+
# Feature importance for Random Forest
|
390 |
+
if "Random" in model_type:
|
391 |
+
st.markdown("### 📊 Feature Importance")
|
392 |
+
importance = pd.DataFrame({
|
393 |
+
'Feature': selected_features,
|
394 |
+
'Importance': model.feature_importances_
|
395 |
+
}).sort_values('Importance', ascending=False)
|
396 |
+
|
397 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
398 |
+
sns.barplot(x='Importance', y='Feature', data=importance, ax=ax)
|
399 |
+
ax.set_title("Feature Importance")
|
400 |
+
st.pyplot(fig)
|
401 |
+
else:
|
402 |
+
st.error("⚠️ Please select at least one feature")
|
403 |
+
|
404 |
+
# Prediction section
|
405 |
+
st.markdown("### 🎯 Make Predictions")
|
406 |
+
if 'model' in st.session_state:
|
407 |
+
pred_col1, pred_col2 = st.columns([2, 1])
|
408 |
+
|
409 |
+
with pred_col1:
|
410 |
+
st.markdown("#### Input Features")
|
411 |
+
input_data = {}
|
412 |
+
|
413 |
+
# Create input fields for each feature
|
414 |
+
for feature in st.session_state.features:
|
415 |
+
min_val = float(st.session_state.data[feature].min())
|
416 |
+
max_val = float(st.session_state.data[feature].max())
|
417 |
+
mean_val = float(st.session_state.data[feature].mean())
|
418 |
+
|
419 |
+
input_data[feature] = st.slider(
|
420 |
+
f"{feature}:",
|
421 |
+
min_value=min_val,
|
422 |
+
max_value=max_val,
|
423 |
+
value=mean_val,
|
424 |
+
help=f"Range: {min_val:.2f} to {max_val:.2f}"
|
425 |
+
)
|
426 |
+
|
427 |
+
with pred_col2:
|
428 |
+
if st.button("🎯 Predict", use_container_width=True):
|
429 |
+
input_df = pd.DataFrame([input_data])
|
430 |
+
input_scaled = st.session_state.scaler.transform(input_df)
|
431 |
+
prediction = st.session_state.model.predict(input_scaled)[0]
|
432 |
+
|
433 |
+
st.success(f"Predicted {target_column}: {prediction:.2f}")
|
434 |
+
else:
|
435 |
+
st.info("ℹ️ Train a model first to make predictions")
|