import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split # Set page configuration with custom theme st.set_page_config( page_title="Data Analytics Hub", page_icon="📊", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS for better styling st.markdown(""" """, unsafe_allow_html=True) # Initialize session state if 'data' not in st.session_state: # Create sample data np.random.seed(42) dates = pd.date_range('2023-01-01', periods=100, freq='D') st.session_state.data = pd.DataFrame({ 'date': dates, 'sales': np.random.normal(1000, 200, 100), 'visitors': np.random.normal(500, 100, 100), 'conversion_rate': np.random.uniform(0.01, 0.05, 100), 'customer_satisfaction': np.random.normal(4.2, 0.5, 100), 'region': np.random.choice(['North', 'South', 'East', 'West'], 100) }) # Sidebar with enhanced styling with st.sidebar: st.image("https://via.placeholder.com/150?text=Analytics+Hub", width=150) st.title("Analytics Hub") selected_page = st.radio( "📑 Navigation", ["🏠 Dashboard", "🔍 Data Explorer", "📊 Visualization", "🤖 ML Predictions"], key="navigation" ) # Dashboard page if selected_page == "🏠 Dashboard": st.title("📊 Data Analytics Dashboard") # Quick stats in a grid col1, col2, col3, col4 = st.columns(4) with col1: st.metric( "Total Records", f"{len(st.session_state.data):,}", "Current dataset size" ) with col2: st.metric( "Avg Sales", f"${st.session_state.data['sales'].mean():,.2f}", f"{st.session_state.data['sales'].pct_change().mean()*100:.1f}%" ) with col3: st.metric( "Avg Visitors", f"{st.session_state.data['visitors'].mean():,.0f}", f"{st.session_state.data['visitors'].pct_change().mean()*100:.1f}%" ) with col4: st.metric( "Satisfaction", f"{st.session_state.data['customer_satisfaction'].mean():.2f}", "Average rating" ) # Data upload section with better styling st.markdown("### 📁 Upload Your Dataset") upload_col1, upload_col2 = st.columns([2, 3]) with upload_col1: uploaded_file = st.file_uploader( "Choose a CSV file", type="csv", help="Upload your CSV file to begin analysis" ) if uploaded_file is not None: try: st.session_state.data = pd.read_csv(uploaded_file) st.success("✅ Data uploaded successfully!") except Exception as e: st.error(f"❌ Error uploading file: {e}") with upload_col2: st.markdown("#### Dataset Preview") st.dataframe( st.session_state.data.head(3), use_container_width=True ) # Data Explorer page elif selected_page == "🔍 Data Explorer": st.title("🔍 Data Explorer") # Enhanced data summary col1, col2 = st.columns([1, 2]) with col1: st.markdown("### 📊 Dataset Overview") st.info(f""" - **Rows:** {st.session_state.data.shape[0]:,} - **Columns:** {st.session_state.data.shape[1]} - **Memory Usage:** {st.session_state.data.memory_usage().sum() / 1024**2:.2f} MB """) with col2: st.markdown("### 📈 Quick Stats") st.dataframe( st.session_state.data.describe(), use_container_width=True ) # Column analysis with better visualization st.markdown("### 🔬 Column Analysis") col1, col2, col3 = st.columns([1, 1, 2]) with col1: column = st.selectbox( "Select column:", st.session_state.data.columns, help="Choose a column to analyze" ) with col2: if pd.api.types.is_numeric_dtype(st.session_state.data[column]): analysis_type = st.selectbox( "Analysis type:", ["Distribution", "Time Series"] if "date" in column.lower() else ["Distribution"], help="Choose type of analysis" ) else: analysis_type = "Value Counts" with col3: if pd.api.types.is_numeric_dtype(st.session_state.data[column]): stats_col1, stats_col2 = st.columns(2) with stats_col1: st.metric("Mean", f"{st.session_state.data[column].mean():.2f}") st.metric("Std Dev", f"{st.session_state.data[column].std():.2f}") with stats_col2: st.metric("Median", f"{st.session_state.data[column].median():.2f}") st.metric("IQR", f"{st.session_state.data[column].quantile(0.75) - st.session_state.data[column].quantile(0.25):.2f}") # Enhanced visualization fig, ax = plt.subplots(figsize=(12, 6)) if pd.api.types.is_numeric_dtype(st.session_state.data[column]): sns.set_style("whitegrid") sns.histplot(data=st.session_state.data, x=column, kde=True, ax=ax) ax.set_title(f"Distribution of {column}", pad=20) else: value_counts = st.session_state.data[column].value_counts() sns.barplot(x=value_counts.index, y=value_counts.values, ax=ax) ax.set_title(f"Value Counts for {column}", pad=20) plt.xticks(rotation=45) st.pyplot(fig) # Visualization page elif selected_page == "📊 Visualization": st.title("📊 Advanced Visualizations") # Enhanced chart selection chart_type = st.selectbox( "Select visualization type:", ["📊 Bar Chart", "📈 Line Chart", "🔵 Scatter Plot", "🌡️ Heatmap"], help="Choose the type of visualization you want to create" ) if chart_type in ["📊 Bar Chart", "📈 Line Chart"]: col1, col2, col3 = st.columns([1, 1, 1]) with col1: x_column = st.selectbox("X-axis:", st.session_state.data.columns) with col2: y_column = st.selectbox( "Y-axis:", [col for col in st.session_state.data.columns if pd.api.types.is_numeric_dtype(st.session_state.data[col])] ) with col3: color_theme = st.selectbox( "Color theme:", ["viridis", "magma", "plasma", "inferno"] ) # Create enhanced visualization fig, ax = plt.subplots(figsize=(12, 6)) sns.set_style("whitegrid") sns.set_palette(color_theme) if not pd.api.types.is_numeric_dtype(st.session_state.data[x_column]): agg_data = st.session_state.data.groupby(x_column)[y_column].mean().reset_index() if "Bar" in chart_type: sns.barplot(x=x_column, y=y_column, data=agg_data, ax=ax) else: sns.lineplot(x=x_column, y=y_column, data=agg_data, ax=ax, marker='o') else: if "Bar" in chart_type: sns.barplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax) else: sns.lineplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax) plt.xticks(rotation=45) ax.set_title(f"{y_column} by {x_column}", pad=20) st.pyplot(fig) elif "Scatter" in chart_type: col1, col2, col3 = st.columns([1, 1, 1]) with col1: x_column = st.selectbox( "X-axis:", [col for col in st.session_state.data.columns if pd.api.types.is_numeric_dtype(st.session_state.data[col])] ) with col2: y_column = st.selectbox( "Y-axis:", [col for col in st.session_state.data.columns if pd.api.types.is_numeric_dtype(st.session_state.data[col]) and col != x_column] ) with col3: hue_column = st.selectbox( "Color by:", ["None"] + list(st.session_state.data.columns) ) fig, ax = plt.subplots(figsize=(12, 6)) sns.set_style("whitegrid") if hue_column != "None": sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, hue=hue_column, ax=ax) else: sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax) ax.set_title(f"{y_column} vs {x_column}", pad=20) st.pyplot(fig) elif "Heatmap" in chart_type: st.markdown("### 🌡️ Correlation Heatmap") numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist() correlation = st.session_state.data[numeric_cols].corr() fig, ax = plt.subplots(figsize=(12, 8)) mask = np.triu(np.ones_like(correlation)) sns.heatmap( correlation, mask=mask, annot=True, cmap='coolwarm', ax=ax, center=0, square=True, fmt='.2f', linewidths=1 ) ax.set_title("Correlation Heatmap", pad=20) st.pyplot(fig) # ML Predictions page elif selected_page == "🤖 ML Predictions": st.title("🤖 Machine Learning Predictions") # Model configuration st.markdown("### ⚙️ Model Configuration") config_col1, config_col2 = st.columns(2) with config_col1: numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist() target_column = st.selectbox( "Target variable:", numeric_cols, help="Select the variable you want to predict" ) with config_col2: model_type = st.selectbox( "Model type:", ["📊 Linear Regression", "🌲 Random Forest"], help="Choose the type of model to train" ) # Feature selection with better UI st.markdown("### 🎯 Feature Selection") feature_cols = [col for col in numeric_cols if col != target_column] selected_features = st.multiselect( "Select features for the model:", feature_cols, default=feature_cols, help="Choose the variables to use as predictors" ) # Model training section train_col1, train_col2 = st.columns([2, 1]) with train_col1: if st.button("🚀 Train Model", use_container_width=True): if len(selected_features) > 0: with st.spinner("Training model..."): # Prepare data X = st.session_state.data[selected_features] y = st.session_state.data[target_column] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) if "Linear" in model_type: model = LinearRegression() else: model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X_train_scaled, y_train) # Store model and scaler in session state st.session_state.model = model st.session_state.scaler = scaler st.session_state.features = selected_features # Model evaluation train_score = model.score(X_train_scaled, y_train) test_score = model.score(X_test_scaled, y_test) st.success("✨ Model trained successfully!") # Display metrics metric_col1, metric_col2 = st.columns(2) with metric_col1: st.metric("Training R² Score", f"{train_score:.4f}") with metric_col2: st.metric("Testing R² Score", f"{test_score:.4f}") # Feature importance for Random Forest if "Random" in model_type: st.markdown("### 📊 Feature Importance") importance = pd.DataFrame({ 'Feature': selected_features, 'Importance': model.feature_importances_ }).sort_values('Importance', ascending=False) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x='Importance', y='Feature', data=importance, ax=ax) ax.set_title("Feature Importance") st.pyplot(fig) else: st.error("⚠️ Please select at least one feature") # Prediction section st.markdown("### 🎯 Make Predictions") if 'model' in st.session_state: pred_col1, pred_col2 = st.columns([2, 1]) with pred_col1: st.markdown("#### Input Features") input_data = {} # Create input fields for each feature for feature in st.session_state.features: min_val = float(st.session_state.data[feature].min()) max_val = float(st.session_state.data[feature].max()) mean_val = float(st.session_state.data[feature].mean()) input_data[feature] = st.slider( f"{feature}:", min_value=min_val, max_value=max_val, value=mean_val, help=f"Range: {min_val:.2f} to {max_val:.2f}" ) with pred_col2: if st.button("🎯 Predict", use_container_width=True): input_df = pd.DataFrame([input_data]) input_scaled = st.session_state.scaler.transform(input_df) prediction = st.session_state.model.predict(input_scaled)[0] st.success(f"Predicted {target_column}: {prediction:.2f}") else: st.info("ℹ️ Train a model first to make predictions")