Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
# Setup model
|
3 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -19,3 +25,90 @@ def load_model():
|
|
19 |
torch_dtype=torch_dtype,
|
20 |
device=device,
|
21 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import base64
|
4 |
+
import tempfile
|
5 |
+
import os
|
6 |
+
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
7 |
|
8 |
# Setup model
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
25 |
torch_dtype=torch_dtype,
|
26 |
device=device,
|
27 |
)
|
28 |
+
|
29 |
+
asr_pipeline = load_model()
|
30 |
+
|
31 |
+
st.title("Swedish Speech-to-Text Demo")
|
32 |
+
|
33 |
+
# Audio Upload Option
|
34 |
+
uploaded_file = st.file_uploader("Ladda upp en ljudfil", type=["wav", "mp3", "flac"])
|
35 |
+
|
36 |
+
# JavaScript for recording audio
|
37 |
+
audio_recorder_js = """
|
38 |
+
<script>
|
39 |
+
let mediaRecorder;
|
40 |
+
let audioChunks = [];
|
41 |
+
let isRecording = false;
|
42 |
+
|
43 |
+
function startRecording() {
|
44 |
+
if (!isRecording) {
|
45 |
+
isRecording = true;
|
46 |
+
navigator.mediaDevices.getUserMedia({ audio: true }).then(stream => {
|
47 |
+
mediaRecorder = new MediaRecorder(stream);
|
48 |
+
audioChunks = [];
|
49 |
+
mediaRecorder.ondataavailable = event => {
|
50 |
+
audioChunks.push(event.data);
|
51 |
+
};
|
52 |
+
mediaRecorder.onstop = () => {
|
53 |
+
const audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
|
54 |
+
const reader = new FileReader();
|
55 |
+
reader.readAsDataURL(audioBlob);
|
56 |
+
reader.onloadend = () => {
|
57 |
+
const base64Audio = reader.result.split(',')[1];
|
58 |
+
fetch('/save_audio', {
|
59 |
+
method: 'POST',
|
60 |
+
headers: { 'Content-Type': 'application/json' },
|
61 |
+
body: JSON.stringify({ audio: base64Audio })
|
62 |
+
}).then(response => response.json()).then(data => {
|
63 |
+
console.log(data);
|
64 |
+
window.location.reload();
|
65 |
+
});
|
66 |
+
};
|
67 |
+
};
|
68 |
+
mediaRecorder.start();
|
69 |
+
});
|
70 |
+
}
|
71 |
+
}
|
72 |
+
|
73 |
+
function stopRecording() {
|
74 |
+
if (isRecording) {
|
75 |
+
isRecording = false;
|
76 |
+
mediaRecorder.stop();
|
77 |
+
}
|
78 |
+
}
|
79 |
+
</script>
|
80 |
+
|
81 |
+
<button onclick="startRecording()">🎤 Starta inspelning</button>
|
82 |
+
<button onclick="stopRecording()">⏹️ Stoppa inspelning</button>
|
83 |
+
"""
|
84 |
+
|
85 |
+
st.components.v1.html(audio_recorder_js)
|
86 |
+
|
87 |
+
# Processing audio input (uploaded file or recorded)
|
88 |
+
audio_path = None
|
89 |
+
|
90 |
+
if uploaded_file is not None:
|
91 |
+
# Save uploaded file to a temp location
|
92 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[-1]) as temp_audio:
|
93 |
+
temp_audio.write(uploaded_file.read())
|
94 |
+
audio_path = temp_audio.name
|
95 |
+
|
96 |
+
elif "audio_data" in st.session_state and st.session_state["audio_data"]:
|
97 |
+
# Decode base64 audio from JavaScript recording
|
98 |
+
audio_bytes = base64.b64decode(st.session_state["audio_data"])
|
99 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
100 |
+
temp_audio.write(audio_bytes)
|
101 |
+
audio_path = temp_audio.name
|
102 |
+
|
103 |
+
# Transcribe if we have audio
|
104 |
+
if audio_path:
|
105 |
+
st.audio(audio_path, format="audio/wav")
|
106 |
+
|
107 |
+
with st.spinner("Transkriberar..."):
|
108 |
+
transcription = asr_pipeline(audio_path)["text"]
|
109 |
+
|
110 |
+
st.subheader("📜 Transkription:")
|
111 |
+
st.write(transcription)
|
112 |
+
|
113 |
+
# Cleanup temp file
|
114 |
+
os.remove(audio_path)
|