Spaces:
Sleeping
Sleeping
Update interface.py
Browse files- interface.py +185 -185
interface.py
CHANGED
@@ -1,186 +1,186 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import json
|
3 |
-
import re
|
4 |
-
from json import loads, JSONDecodeError
|
5 |
-
import sys
|
6 |
-
import os
|
7 |
-
import ast
|
8 |
-
from util.vector_base import EmbeddingFunction, get_or_create_vector_base
|
9 |
-
from doubao_service import DouBaoService
|
10 |
-
from PROMPT_TEMPLATE import prompt_template
|
11 |
-
from util.Embeddings import TextEmb3LargeEmbedding
|
12 |
-
from langchain_core.documents import Document
|
13 |
-
from FlagEmbedding import FlagReranker
|
14 |
-
from retriever import retriever
|
15 |
-
import time
|
16 |
-
from bm25s import BM25, tokenize
|
17 |
-
import contextlib
|
18 |
-
import io
|
19 |
-
|
20 |
-
import gradio as gr
|
21 |
-
import time
|
22 |
-
|
23 |
-
client = DouBaoService("DouBao128Pro")
|
24 |
-
embeddingmodel = TextEmb3LargeEmbedding(max_qpm=58)
|
25 |
-
embedding = EmbeddingFunction(embeddingmodel)
|
26 |
-
safeguard_vector_store = get_or_create_vector_base('safeguard_database', embedding)
|
27 |
-
|
28 |
-
# reranker_model = FlagReranker(
|
29 |
-
# 'C://Users//Admin//Desktop//PDPO//NLL_LLM//model//bge-reranker-v2-m3',
|
30 |
-
# use_fp16=True,
|
31 |
-
# devices=["cpu"],
|
32 |
-
# )
|
33 |
-
|
34 |
-
OPTIONS = ['AI Governance',
|
35 |
-
'Data Accuracy',
|
36 |
-
'Data Minimization & Purpose Limitation',
|
37 |
-
'Data Retention',
|
38 |
-
'Data Security',
|
39 |
-
'Data Sharing',
|
40 |
-
'Individual Rights',
|
41 |
-
'Privacy by Design',
|
42 |
-
'Transparency']
|
43 |
-
|
44 |
-
|
45 |
-
def format_model_output(raw_output):
|
46 |
-
"""
|
47 |
-
处理模型输出:
|
48 |
-
- 将 \n 转换为实际换行
|
49 |
-
- 提取 ```json ``` 中的内容并格式化为可折叠的 JSON
|
50 |
-
"""
|
51 |
-
formatted = raw_output.replace('\\n', '\n')
|
52 |
-
def replace_json(match):
|
53 |
-
json_str = match.group(1).strip()
|
54 |
-
try:
|
55 |
-
json_obj = loads(json_str)
|
56 |
-
return f"```json\n{json.dumps(json_obj, indent=2, ensure_ascii=False)}\n```"
|
57 |
-
except JSONDecodeError:
|
58 |
-
return match.group(0)
|
59 |
-
|
60 |
-
formatted = re.sub(r'```json\n?(.*?)\n?```', replace_json, formatted, flags=re.DOTALL)
|
61 |
-
return ast.literal_eval(formatted)
|
62 |
-
|
63 |
-
def model_predict(input_text, if_split_po, topk, selected_items):
|
64 |
-
"""
|
65 |
-
selected_items: 用户选择的项目(可能是["All"]或具体PO)
|
66 |
-
"""
|
67 |
-
requirement = input_text
|
68 |
-
requirement = requirement.replace("\t", "").replace("\n", "").replace("\r", "")
|
69 |
-
if "All" in selected_items:
|
70 |
-
PO = OPTIONS
|
71 |
-
else:
|
72 |
-
PO = selected_items
|
73 |
-
if topk:
|
74 |
-
topk = int(topk)
|
75 |
-
else:
|
76 |
-
topk = 10
|
77 |
-
final_result = retriever(
|
78 |
-
requirement,
|
79 |
-
PO,
|
80 |
-
safeguard_vector_store,
|
81 |
-
reranker_model=None,
|
82 |
-
using_reranker=False,
|
83 |
-
using_BM25=False,
|
84 |
-
using_chroma=True,
|
85 |
-
k=topk,
|
86 |
-
if_split_po=if_split_po
|
87 |
-
)
|
88 |
-
mapping_safeguards = {}
|
89 |
-
for safeguard in final_result:
|
90 |
-
if safeguard[3] not in mapping_safeguards:
|
91 |
-
mapping_safeguards[safeguard[3]] = []
|
92 |
-
mapping_safeguards[safeguard[3]].append(
|
93 |
-
{
|
94 |
-
"Score": safeguard[0],
|
95 |
-
"Safeguard Number": safeguard[1],
|
96 |
-
"Safeguard Description": safeguard[2]
|
97 |
-
}
|
98 |
-
)
|
99 |
-
prompt = prompt_template(requirement, mapping_safeguards)
|
100 |
-
response = client.chat_complete(messages=[
|
101 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
102 |
-
{"role": "user", "content": prompt},
|
103 |
-
])
|
104 |
-
# return {"requirement": requirement, "safeguards": mapping_safeguards}
|
105 |
-
print("requirement:", requirement)
|
106 |
-
print("mapping safeguards:", mapping_safeguards)
|
107 |
-
print("response:", response)
|
108 |
-
return {"requirement": requirement, "safeguards": format_model_output(response)}
|
109 |
-
|
110 |
-
with gr.Blocks(title="New Law Landing") as demo:
|
111 |
-
gr.Markdown("## 🏙️ New Law Landing")
|
112 |
-
|
113 |
-
requirement = gr.Textbox(label="Input Requirements", placeholder="Example: Data Minimization Consent for incompatible purposes")
|
114 |
-
details = gr.Textbox(label="Input Details", placeholder="Example: Require consent for...")
|
115 |
-
|
116 |
-
# 修改为 Number 输入组件
|
117 |
-
topk = gr.Number(
|
118 |
-
label="Top K safeguards",
|
119 |
-
value=10,
|
120 |
-
precision=0,
|
121 |
-
minimum=1,
|
122 |
-
interactive=True
|
123 |
-
)
|
124 |
-
|
125 |
-
with gr.Row():
|
126 |
-
with gr.Column(scale=1):
|
127 |
-
if_split_po = gr.Checkbox(
|
128 |
-
label="If Split Privacy Objective",
|
129 |
-
value=True,
|
130 |
-
info="Recall K Safeguards for each Privacy Objective"
|
131 |
-
)
|
132 |
-
with gr.Column(scale=1):
|
133 |
-
all_checkbox = gr.Checkbox(
|
134 |
-
label="ALL Privacy Objective",
|
135 |
-
value=True,
|
136 |
-
info="No specific Privacy Objective is specified"
|
137 |
-
)
|
138 |
-
with gr.Column(scale=4):
|
139 |
-
PO_checklist = gr.CheckboxGroup(
|
140 |
-
label="Choose Privacy Objective",
|
141 |
-
choices=OPTIONS,
|
142 |
-
value=[],
|
143 |
-
interactive=True
|
144 |
-
)
|
145 |
-
|
146 |
-
submit_btn = gr.Button("Submit", variant="primary")
|
147 |
-
result_output = gr.JSON(label="Related safeguards", open=True)
|
148 |
-
|
149 |
-
|
150 |
-
def sync_checkboxes(selected_items, all_selected):
|
151 |
-
if len(selected_items) > 0:
|
152 |
-
return False
|
153 |
-
return all_selected
|
154 |
-
|
155 |
-
PO_checklist.change(
|
156 |
-
fn=sync_checkboxes,
|
157 |
-
inputs=[PO_checklist, all_checkbox],
|
158 |
-
outputs=all_checkbox
|
159 |
-
)
|
160 |
-
|
161 |
-
def sync_all(selected_all, current_selection):
|
162 |
-
if selected_all:
|
163 |
-
return []
|
164 |
-
return current_selection
|
165 |
-
|
166 |
-
all_checkbox.change(
|
167 |
-
fn=sync_all,
|
168 |
-
inputs=[all_checkbox, PO_checklist],
|
169 |
-
outputs=PO_checklist
|
170 |
-
)
|
171 |
-
|
172 |
-
def process_inputs(requirement, details, topk, if_split_po, all_selected, PO_selected):
|
173 |
-
input_text = requirement + ": " + details
|
174 |
-
if all_selected:
|
175 |
-
return model_predict(input_text, if_split_po, int(topk), ["All"])
|
176 |
-
else:
|
177 |
-
return model_predict(input_text, if_split_po, int(topk), PO_selected)
|
178 |
-
|
179 |
-
submit_btn.click(
|
180 |
-
fn=process_inputs,
|
181 |
-
inputs=[requirement, details, topk, if_split_po, all_checkbox, PO_checklist],
|
182 |
-
outputs=[result_output]
|
183 |
-
)
|
184 |
-
|
185 |
-
if __name__ == "__main__":
|
186 |
demo.launch(share=True)
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
from json import loads, JSONDecodeError
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
import ast
|
8 |
+
from util.vector_base import EmbeddingFunction, get_or_create_vector_base
|
9 |
+
from doubao_service import DouBaoService
|
10 |
+
from PROMPT_TEMPLATE import prompt_template
|
11 |
+
from util.Embeddings import TextEmb3LargeEmbedding
|
12 |
+
from langchain_core.documents import Document
|
13 |
+
from FlagEmbedding import FlagReranker
|
14 |
+
from retriever import retriever
|
15 |
+
import time
|
16 |
+
# from bm25s import BM25, tokenize
|
17 |
+
import contextlib
|
18 |
+
import io
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
+
import time
|
22 |
+
|
23 |
+
client = DouBaoService("DouBao128Pro")
|
24 |
+
embeddingmodel = TextEmb3LargeEmbedding(max_qpm=58)
|
25 |
+
embedding = EmbeddingFunction(embeddingmodel)
|
26 |
+
safeguard_vector_store = get_or_create_vector_base('safeguard_database', embedding)
|
27 |
+
|
28 |
+
# reranker_model = FlagReranker(
|
29 |
+
# 'C://Users//Admin//Desktop//PDPO//NLL_LLM//model//bge-reranker-v2-m3',
|
30 |
+
# use_fp16=True,
|
31 |
+
# devices=["cpu"],
|
32 |
+
# )
|
33 |
+
|
34 |
+
OPTIONS = ['AI Governance',
|
35 |
+
'Data Accuracy',
|
36 |
+
'Data Minimization & Purpose Limitation',
|
37 |
+
'Data Retention',
|
38 |
+
'Data Security',
|
39 |
+
'Data Sharing',
|
40 |
+
'Individual Rights',
|
41 |
+
'Privacy by Design',
|
42 |
+
'Transparency']
|
43 |
+
|
44 |
+
|
45 |
+
def format_model_output(raw_output):
|
46 |
+
"""
|
47 |
+
处理模型输出:
|
48 |
+
- 将 \n 转换为实际换行
|
49 |
+
- 提取 ```json ``` 中的内容并格式化为可折叠的 JSON
|
50 |
+
"""
|
51 |
+
formatted = raw_output.replace('\\n', '\n')
|
52 |
+
def replace_json(match):
|
53 |
+
json_str = match.group(1).strip()
|
54 |
+
try:
|
55 |
+
json_obj = loads(json_str)
|
56 |
+
return f"```json\n{json.dumps(json_obj, indent=2, ensure_ascii=False)}\n```"
|
57 |
+
except JSONDecodeError:
|
58 |
+
return match.group(0)
|
59 |
+
|
60 |
+
formatted = re.sub(r'```json\n?(.*?)\n?```', replace_json, formatted, flags=re.DOTALL)
|
61 |
+
return ast.literal_eval(formatted)
|
62 |
+
|
63 |
+
def model_predict(input_text, if_split_po, topk, selected_items):
|
64 |
+
"""
|
65 |
+
selected_items: 用户选择的项目(可能是["All"]或具体PO)
|
66 |
+
"""
|
67 |
+
requirement = input_text
|
68 |
+
requirement = requirement.replace("\t", "").replace("\n", "").replace("\r", "")
|
69 |
+
if "All" in selected_items:
|
70 |
+
PO = OPTIONS
|
71 |
+
else:
|
72 |
+
PO = selected_items
|
73 |
+
if topk:
|
74 |
+
topk = int(topk)
|
75 |
+
else:
|
76 |
+
topk = 10
|
77 |
+
final_result = retriever(
|
78 |
+
requirement,
|
79 |
+
PO,
|
80 |
+
safeguard_vector_store,
|
81 |
+
reranker_model=None,
|
82 |
+
using_reranker=False,
|
83 |
+
using_BM25=False,
|
84 |
+
using_chroma=True,
|
85 |
+
k=topk,
|
86 |
+
if_split_po=if_split_po
|
87 |
+
)
|
88 |
+
mapping_safeguards = {}
|
89 |
+
for safeguard in final_result:
|
90 |
+
if safeguard[3] not in mapping_safeguards:
|
91 |
+
mapping_safeguards[safeguard[3]] = []
|
92 |
+
mapping_safeguards[safeguard[3]].append(
|
93 |
+
{
|
94 |
+
"Score": safeguard[0],
|
95 |
+
"Safeguard Number": safeguard[1],
|
96 |
+
"Safeguard Description": safeguard[2]
|
97 |
+
}
|
98 |
+
)
|
99 |
+
prompt = prompt_template(requirement, mapping_safeguards)
|
100 |
+
response = client.chat_complete(messages=[
|
101 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
102 |
+
{"role": "user", "content": prompt},
|
103 |
+
])
|
104 |
+
# return {"requirement": requirement, "safeguards": mapping_safeguards}
|
105 |
+
print("requirement:", requirement)
|
106 |
+
print("mapping safeguards:", mapping_safeguards)
|
107 |
+
print("response:", response)
|
108 |
+
return {"requirement": requirement, "safeguards": format_model_output(response)}
|
109 |
+
|
110 |
+
with gr.Blocks(title="New Law Landing") as demo:
|
111 |
+
gr.Markdown("## 🏙️ New Law Landing")
|
112 |
+
|
113 |
+
requirement = gr.Textbox(label="Input Requirements", placeholder="Example: Data Minimization Consent for incompatible purposes")
|
114 |
+
details = gr.Textbox(label="Input Details", placeholder="Example: Require consent for...")
|
115 |
+
|
116 |
+
# 修改为 Number 输入组件
|
117 |
+
topk = gr.Number(
|
118 |
+
label="Top K safeguards",
|
119 |
+
value=10,
|
120 |
+
precision=0,
|
121 |
+
minimum=1,
|
122 |
+
interactive=True
|
123 |
+
)
|
124 |
+
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column(scale=1):
|
127 |
+
if_split_po = gr.Checkbox(
|
128 |
+
label="If Split Privacy Objective",
|
129 |
+
value=True,
|
130 |
+
info="Recall K Safeguards for each Privacy Objective"
|
131 |
+
)
|
132 |
+
with gr.Column(scale=1):
|
133 |
+
all_checkbox = gr.Checkbox(
|
134 |
+
label="ALL Privacy Objective",
|
135 |
+
value=True,
|
136 |
+
info="No specific Privacy Objective is specified"
|
137 |
+
)
|
138 |
+
with gr.Column(scale=4):
|
139 |
+
PO_checklist = gr.CheckboxGroup(
|
140 |
+
label="Choose Privacy Objective",
|
141 |
+
choices=OPTIONS,
|
142 |
+
value=[],
|
143 |
+
interactive=True
|
144 |
+
)
|
145 |
+
|
146 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
147 |
+
result_output = gr.JSON(label="Related safeguards", open=True)
|
148 |
+
|
149 |
+
|
150 |
+
def sync_checkboxes(selected_items, all_selected):
|
151 |
+
if len(selected_items) > 0:
|
152 |
+
return False
|
153 |
+
return all_selected
|
154 |
+
|
155 |
+
PO_checklist.change(
|
156 |
+
fn=sync_checkboxes,
|
157 |
+
inputs=[PO_checklist, all_checkbox],
|
158 |
+
outputs=all_checkbox
|
159 |
+
)
|
160 |
+
|
161 |
+
def sync_all(selected_all, current_selection):
|
162 |
+
if selected_all:
|
163 |
+
return []
|
164 |
+
return current_selection
|
165 |
+
|
166 |
+
all_checkbox.change(
|
167 |
+
fn=sync_all,
|
168 |
+
inputs=[all_checkbox, PO_checklist],
|
169 |
+
outputs=PO_checklist
|
170 |
+
)
|
171 |
+
|
172 |
+
def process_inputs(requirement, details, topk, if_split_po, all_selected, PO_selected):
|
173 |
+
input_text = requirement + ": " + details
|
174 |
+
if all_selected:
|
175 |
+
return model_predict(input_text, if_split_po, int(topk), ["All"])
|
176 |
+
else:
|
177 |
+
return model_predict(input_text, if_split_po, int(topk), PO_selected)
|
178 |
+
|
179 |
+
submit_btn.click(
|
180 |
+
fn=process_inputs,
|
181 |
+
inputs=[requirement, details, topk, if_split_po, all_checkbox, PO_checklist],
|
182 |
+
outputs=[result_output]
|
183 |
+
)
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
demo.launch(share=True)
|