captain-awesome commited on
Commit
fb0046b
·
verified ·
1 Parent(s): 041c300

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -33
app.py CHANGED
@@ -1,48 +1,49 @@
1
- # import gradio as gr
2
- # # from PIL import Image
3
- # from transformers.utils import logging
4
- # from transformers import BlipForConditionalGeneration, AutoProcessor
5
-
6
- # logging.set_verbosity_error()
7
 
8
- # model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
9
- # processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
10
 
11
- # def caption_image(image):
12
- # inputs = processor(image, return_tensors="pt")
13
- # out = model.generate(**inputs)
14
- # caption = processor.decode(out[0], skip_special_tokens=True)
15
- # return caption
16
 
 
 
 
 
 
17
 
18
 
 
 
19
  # gr.Interface(caption_image, gr.inputs.Image(), "text").launch()
20
- # # gr.Interface(caption_image, image_input, caption_output).launch()
21
 
22
 
23
 
24
 
25
- import streamlit as st
26
- # from PIL import Image
27
- from transformers.utils import logging
28
- from transformers import BlipForConditionalGeneration, AutoProcessor
29
- import torch
30
 
31
- logging.set_verbosity_error()
32
 
33
- model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
34
- processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
35
 
36
- st.title("Image Captioning")
37
 
38
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
39
 
40
- if uploaded_file is not None:
41
- image = Image.open(uploaded_file)
42
- st.image(image, caption="Uploaded Image", use_column_width=True)
43
- st.write("")
44
- st.write("Generating caption...")
45
- inputs = processor(image, return_tensors="pt")
46
- out = model.generate(**inputs)
47
- caption = processor.decode(out[0], skip_special_tokens=True)
48
- st.write("Caption:", caption)
 
1
+ import gradio as gr
2
+ # from PIL import Image
3
+ from transformers.utils import logging
4
+ from transformers import BlipForConditionalGeneration, AutoProcessor
 
 
5
 
6
+ logging.set_verbosity_error()
 
7
 
8
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
9
+ processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
 
 
 
10
 
11
+ def caption_image(image):
12
+ inputs = processor(image, return_tensors="pt")
13
+ out = model.generate(**inputs)
14
+ caption = processor.decode(out[0], skip_special_tokens=True)
15
+ return caption
16
 
17
 
18
+ iface = gr.Interface(fn=caption_image, inputs=["image"], outputs="textbox")
19
+ iface.launch()
20
  # gr.Interface(caption_image, gr.inputs.Image(), "text").launch()
21
+ # gr.Interface(caption_image, image_input, caption_output).launch()
22
 
23
 
24
 
25
 
26
+ # import streamlit as st
27
+ # # from PIL import Image
28
+ # from transformers.utils import logging
29
+ # from transformers import BlipForConditionalGeneration, AutoProcessor
30
+ # import torch
31
 
32
+ # logging.set_verbosity_error()
33
 
34
+ # model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
35
+ # processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
36
 
37
+ # st.title("Image Captioning")
38
 
39
+ # uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
40
 
41
+ # if uploaded_file is not None:
42
+ # image = Image.open(uploaded_file)
43
+ # st.image(image, caption="Uploaded Image", use_column_width=True)
44
+ # st.write("")
45
+ # st.write("Generating caption...")
46
+ # inputs = processor(image, return_tensors="pt")
47
+ # out = model.generate(**inputs)
48
+ # caption = processor.decode(out[0], skip_special_tokens=True)
49
+ # st.write("Caption:", caption)