import shlex import subprocess subprocess.run(shlex.split("pip install pip==24.0"), check=True) subprocess.run( shlex.split( "pip install package/onnxruntime_gpu-1.17.0-cp310-cp310-manylinux_2_28_x86_64.whl --force-reinstall --no-deps" ), check=True ) subprocess.run( shlex.split( "pip install package/nvdiffrast-0.3.1.torch-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps" ), check=True ) if __name__ == "__main__": from huggingface_hub import snapshot_download snapshot_download("public-data/Unique3D", repo_type="model", local_dir="./ckpt") import os import sys sys.path.append(os.curdir) import torch torch.set_float32_matmul_precision('medium') torch.backends.cuda.matmul.allow_tf32 = True torch.set_grad_enabled(False) import fire import gradio as gr from gradio_app.gradio_3dgen import create_ui as create_3d_ui from gradio_app.all_models import model_zoo _TITLE = '''Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image''' _DESCRIPTION = '''
GitHub Repo stars GitHub License
# [Paper](https://arxiv.org/abs/2405.20343) | [Project page](https://wukailu.github.io/Unique3D/) | [Huggingface Demo](https://huggingface.co/spaces/Wuvin/Unique3D) | [Gradio Demo](http://unique3d.demo.avar.cn/) | [Online Demo](https://www.aiuni.ai/) * High-fidelity and diverse textured meshes generated by Unique3D from single-view images. * The demo is still under construction, and more features are expected to be implemented soon. * If the Huggingface Demo is overcrowded or fails to produce stable results, you can use the Online Demo [aiuni.ai](https://www.aiuni.ai/), which is free to try (get the registration invitation code Join Discord: https://discord.gg/aiuni). However, the Online Demo is slightly different from the Gradio Demo, in that the inference speed is slower, but the generation is much more stable.

Duplicate this Space

Click the button above to duplicate this space and enjoy faster inference on the GPU of your choice.

Special thanks to @hysts for helping to make the "Duplicate this Space" functionality work correctly!

''' def launch(): model_zoo.init_models() with gr.Blocks( title=_TITLE, # theme=gr.themes.Monochrome(), ) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) gr.Markdown(_DESCRIPTION) create_3d_ui("wkl") demo.queue().launch(share=True) if __name__ == '__main__': fire.Fire(launch)