Spaces:
Running
Running
import os | |
import torch | |
import torchvision.transforms as transforms | |
import huggingface_hub | |
import modelscope | |
from PIL import Image | |
EN_US = os.getenv("LANG") != "zh_CN.UTF-8" | |
ZH2EN = { | |
"上传录音 (>40dB)": "Upload a recording (>40dB)", | |
"选择模型": "Select a model", | |
"状态栏": "Status", | |
"音频文件名": "Audio filename", | |
"唱法识别": "Singing method recognition", | |
"建议录音时长保持在 5s 左右, 过长会影响识别效率": "It is recommended to keep the recording length around 5s, too long will affect the recognition efficiency.", | |
"引用": "Cite", | |
"男声 & 美声唱法": "Bel Canto, Male", | |
"女声 & 美声唱法": "Bel Canto, Female", | |
"男声 & 民族唱法": "Folk Singing, Male", | |
"女声 & 民族唱法": "Folk Singing, Female", | |
} | |
MODEL_DIR = ( | |
huggingface_hub.snapshot_download( | |
"ccmusic-database/bel_canto", | |
cache_dir="./__pycache__", | |
) | |
if EN_US | |
else modelscope.snapshot_download( | |
"ccmusic-database/bel_canto", | |
cache_dir="./__pycache__", | |
) | |
) | |
def _L(zh_txt: str): | |
return ZH2EN[zh_txt] if EN_US else zh_txt | |
TRANSLATE = { | |
"m_bel": _L("男声 & 美声唱法"), | |
"f_bel": _L("女声 & 美声唱法"), | |
"m_folk": _L("男声 & 民族唱法"), | |
"f_folk": _L("女声 & 民族唱法"), | |
} | |
CLASSES = list(TRANSLATE.keys()) | |
TEMP_DIR = "./__pycache__/tmp" | |
SAMPLE_RATE = 22050 | |
def toCUDA(x): | |
if hasattr(x, "cuda"): | |
if torch.cuda.is_available(): | |
return x.cuda() | |
return x | |
def find_wav_files(folder_path=f"{MODEL_DIR}/examples"): | |
wav_files = [] | |
for root, _, files in os.walk(folder_path): | |
for file in files: | |
if file.endswith(".wav"): | |
file_path = os.path.join(root, file) | |
wav_files.append(file_path) | |
return wav_files | |
def get_modelist(model_dir=MODEL_DIR, assign_model=""): | |
output = [] | |
for entry in os.listdir(model_dir): | |
# 获取完整路径 | |
full_path = os.path.join(model_dir, entry) | |
# 跳过'.git'文件夹 | |
if entry == ".git" or entry == "examples": | |
print(f"跳过 .git 或 examples 文件夹: {full_path}") | |
continue | |
# 检查条目是文件还是目录 | |
if os.path.isdir(full_path): | |
model = os.path.basename(full_path) | |
if assign_model and assign_model.lower() in model: | |
output.insert(0, model) | |
else: | |
output.append(model) | |
return output | |
def embed_img(img_path: str, input_size=224): | |
transform = transforms.Compose( | |
[ | |
transforms.Resize([input_size, input_size]), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
] | |
) | |
img = Image.open(img_path).convert("RGB") | |
return transform(img).unsqueeze(0) | |