Spaces:
Sleeping
Sleeping
app.py
CHANGED
@@ -1,147 +1,50 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import
|
4 |
-
LlamaForCausalLM,
|
5 |
-
LlamaTokenizer,
|
6 |
-
GenerationConfig
|
7 |
-
)
|
8 |
from peft import PeftModel
|
9 |
|
10 |
-
# ------------------------------------------------------------------------------
|
11 |
-
# CONFIGURE MODEL & PIPELINE
|
12 |
-
# ------------------------------------------------------------------------------
|
13 |
BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
14 |
-
|
15 |
-
|
16 |
-
# Generation hyperparameters
|
17 |
-
DEFAULT_MAX_NEW_TOKENS = 256
|
18 |
-
DEFAULT_TEMPERATURE = 0.7
|
19 |
-
DEFAULT_TOP_K = 50
|
20 |
-
DEFAULT_TOP_P = 0.9
|
21 |
|
22 |
-
|
23 |
-
tokenizer =
|
24 |
-
BASE_MODEL
|
|
|
25 |
)
|
26 |
|
27 |
-
|
28 |
-
base_model =
|
29 |
BASE_MODEL,
|
30 |
-
|
31 |
-
|
|
|
32 |
)
|
33 |
|
34 |
-
|
35 |
model = PeftModel.from_pretrained(
|
36 |
base_model,
|
37 |
-
|
38 |
torch_dtype=torch.float16
|
39 |
)
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
# ------------------------------------------------------------------------------
|
44 |
-
# GENERATION FUNCTION
|
45 |
-
# ------------------------------------------------------------------------------
|
46 |
-
def generate_text(prompt,
|
47 |
-
max_new_tokens=DEFAULT_MAX_NEW_TOKENS,
|
48 |
-
temperature=DEFAULT_TEMPERATURE,
|
49 |
-
top_k=DEFAULT_TOP_K,
|
50 |
-
top_p=DEFAULT_TOP_P):
|
51 |
-
"""Generate text from the finetuned model using the given parameters."""
|
52 |
-
# Tokenize the prompt
|
53 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
54 |
-
|
55 |
-
# Set up generation configuration
|
56 |
-
generation_config = GenerationConfig(
|
57 |
-
max_new_tokens=max_new_tokens,
|
58 |
-
temperature=temperature,
|
59 |
-
top_k=top_k,
|
60 |
-
top_p=top_p,
|
61 |
-
do_sample=True,
|
62 |
-
repetition_penalty=1.1, # adjust if needed
|
63 |
-
)
|
64 |
-
|
65 |
-
# Generate
|
66 |
with torch.no_grad():
|
67 |
-
|
68 |
**inputs,
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
-
|
72 |
-
# Decode the generated tokens
|
73 |
-
generated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
74 |
-
|
75 |
-
# Remove the original prompt from the beginning to return only new text
|
76 |
-
if generated_text.startswith(prompt):
|
77 |
-
return generated_text[len(prompt):].strip()
|
78 |
-
else:
|
79 |
-
return generated_text
|
80 |
-
|
81 |
-
# ------------------------------------------------------------------------------
|
82 |
-
# GRADIO APP
|
83 |
-
# ------------------------------------------------------------------------------
|
84 |
-
def clear_inputs():
|
85 |
-
return "", ""
|
86 |
-
|
87 |
-
with gr.Blocks(css=".gradio-container {max-width: 800px; margin: auto;}") as demo:
|
88 |
-
gr.Markdown("## DeepSeek R1 Distill-Llama 8B + LoRA from `cheberle/autotrain-llama-milch`")
|
89 |
-
gr.Markdown(
|
90 |
-
"This app uses a base **DeepSeek R1 Distill-Llama 8B** model with "
|
91 |
-
"the **LoRA/PEFT adapter** from [`cheberle/autotrain-llama-milch`].\n\n"
|
92 |
-
"Type in a prompt, adjust generation parameters if you wish, and click 'Generate'."
|
93 |
-
)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
lines=5
|
101 |
-
)
|
102 |
-
with gr.Accordion("Advanced Generation Settings", open=False):
|
103 |
-
max_new_tokens = gr.Slider(
|
104 |
-
16, 1024,
|
105 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
106 |
-
step=1,
|
107 |
-
label="Max New Tokens"
|
108 |
-
)
|
109 |
-
temperature = gr.Slider(
|
110 |
-
0.0, 2.0,
|
111 |
-
value=DEFAULT_TEMPERATURE,
|
112 |
-
step=0.1,
|
113 |
-
label="Temperature"
|
114 |
-
)
|
115 |
-
top_k = gr.Slider(
|
116 |
-
0, 100,
|
117 |
-
value=DEFAULT_TOP_K,
|
118 |
-
step=1,
|
119 |
-
label="Top-k"
|
120 |
-
)
|
121 |
-
top_p = gr.Slider(
|
122 |
-
0.0, 1.0,
|
123 |
-
value=DEFAULT_TOP_P,
|
124 |
-
step=0.05,
|
125 |
-
label="Top-p"
|
126 |
-
)
|
127 |
-
|
128 |
-
generate_btn = gr.Button("Generate", variant="primary")
|
129 |
-
clear_btn = gr.Button("Clear")
|
130 |
-
|
131 |
-
with gr.Column():
|
132 |
-
output = gr.Textbox(
|
133 |
-
label="Model Output",
|
134 |
-
lines=12
|
135 |
-
)
|
136 |
-
|
137 |
-
# Button Actions
|
138 |
-
generate_btn.click(
|
139 |
-
fn=generate_text,
|
140 |
-
inputs=[prompt, max_new_tokens, temperature, top_k, top_p],
|
141 |
-
outputs=output
|
142 |
-
)
|
143 |
-
|
144 |
-
clear_btn.click(fn=clear_inputs, inputs=[], outputs=[prompt, output])
|
145 |
|
146 |
-
demo.queue(concurrency_count=1)
|
147 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
4 |
from peft import PeftModel
|
5 |
|
|
|
|
|
|
|
6 |
BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
7 |
+
ADAPTER = "cheberle/autotrain-llama-milch"
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
print("Loading tokenizer...")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
11 |
+
BASE_MODEL,
|
12 |
+
trust_remote_code=True
|
13 |
)
|
14 |
|
15 |
+
print("Loading base model...")
|
16 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
BASE_MODEL,
|
18 |
+
trust_remote_code=True,
|
19 |
+
device_map="auto",
|
20 |
+
torch_dtype=torch.float16
|
21 |
)
|
22 |
|
23 |
+
print("Loading finetuned adapter...")
|
24 |
model = PeftModel.from_pretrained(
|
25 |
base_model,
|
26 |
+
ADAPTER,
|
27 |
torch_dtype=torch.float16
|
28 |
)
|
29 |
+
model.eval()
|
30 |
|
31 |
+
def generate_text(prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
with torch.no_grad():
|
34 |
+
output = model.generate(
|
35 |
**inputs,
|
36 |
+
max_new_tokens=128,
|
37 |
+
temperature=0.7,
|
38 |
+
top_p=0.9,
|
39 |
+
top_k=50,
|
40 |
+
do_sample=True
|
41 |
)
|
42 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
prompt_box = gr.Textbox(lines=4, label="Prompt")
|
46 |
+
output_box = gr.Textbox(lines=6, label="Output")
|
47 |
+
btn = gr.Button("Generate")
|
48 |
+
btn.click(fn=generate_text, inputs=prompt_box, outputs=output_box)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
50 |
demo.launch()
|