gemma / app_v1.py
dasomaru's picture
Upload folder using huggingface_hub
9b14ff1 verified
raw
history blame contribute delete
1.48 kB
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "dasomaru/gemma-3-4bit-it-demo"
# ๐Ÿš€ tokenizer๋Š” CPU์—์„œ๋„ ๋ฏธ๋ฆฌ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ์Œ
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# ๐Ÿš€ model์€ CPU๋กœ๋งŒ ๋จผ์ € ์˜ฌ๋ฆผ (GPU ์•„์ง ์—†์Œ)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # 4bit model์ด๋‹ˆ๊นŒ
trust_remote_code=True,
)
@spaces.GPU(duration=300)
def generate_response(prompt):
# ๋ชจ๋ธ ๋ฐ ํ† ํฌ๋‚˜์ด์ € ๋กœ๋”ฉ์€ ํ•จ์ˆ˜ ๋‚ด๋ถ€์—์„œ ์ˆ˜ํ–‰
tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
model.to("cuda")
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7,
top_p=0.9,
top_k=50,
do_sample=True,)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()
# zero = torch.Tensor([0]).cuda()
# print(zero.device) # <-- 'cpu' ๐Ÿค”
# @spaces.GPU
# def greet(n):
# print(zero.device) # <-- 'cuda:0' ๐Ÿค—
# return f"Hello {zero + n} Tensor"
# demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
# demo.launch()